Luigi commited on
Commit
041841e
·
1 Parent(s): 50ad5be

layout update

Browse files
Files changed (1) hide show
  1. app.py +43 -40
app.py CHANGED
@@ -36,7 +36,7 @@ def get_pipeline(model_name):
36
  @spaces.GPU
37
  def suggest_next(text, model_name, k, m):
38
  """
39
- 使用 Beam Search 產生 M 條最可能的下段建議,並一次更新候選列表,最後將簡體字轉為繁體字。
40
  """
41
  gen_pipe = get_pipeline(model_name)
42
  outs = gen_pipe(
@@ -47,77 +47,77 @@ def suggest_next(text, model_name, k, m):
47
  do_sample=False,
48
  early_stopping=True
49
  )
50
- # 提取並清理生成內容
51
  suggestions = [out["generated_text"][len(text):].strip() for out in outs]
52
  suggestions = [s for s in suggestions if s]
53
- # 簡體轉繁體
54
  suggestions = [cc.convert(s) for s in suggestions]
 
 
 
55
 
56
- return update(choices=suggestions, value=None)
57
 
58
  def append_suggestion(current, choice):
59
  if choice is None:
60
  return current
61
- # 模擬輸入法候選選中
62
- return current + choice
63
-
64
- def suggest_on_change(text, model_name, k, m, auto_flag):
65
- """
66
- 當輸入框內容改變時,如果自動預測開啟,則觸發建議生成;否則清空候選。
67
- """
68
- if auto_flag:
69
- return suggest_next(text, model_name, k, m)
70
- return update(choices=[], value=None)
71
 
72
  # 自訂 CSS:模擬經典中文輸入法候選欄樣式
73
  custom_css = """
 
 
 
74
  #suggestions-bar .candidate-list {
75
  display: flex;
76
- gap: 12px;
77
- background: #ffffff;
78
- border: 1px solid #ccc;
79
  border-radius: 4px;
80
- padding: 6px;
 
 
81
  }
82
  #suggestions-bar .candidate-list input[type=radio] {
83
  display: none;
84
  }
85
  #suggestions-bar .candidate-list label {
 
86
  cursor: pointer;
87
- padding: 2px 6px;
88
- border-radius: 4px;
89
  }
90
  #suggestions-bar .candidate-list label:hover {
91
- background: #f0f0f0;
92
  }
93
  #suggestions-bar .candidate-list input[type=radio]:checked + label {
94
- background: #e0e0e0;
95
- border: 1px solid #888;
96
  }
97
  """
98
 
99
  with gr.Blocks(css=custom_css) as demo:
100
- # 標題和說明
101
  gr.Markdown(
102
- "## 🇹🇼 繁體中文輸入法加速器 \n"
103
- "結合小型語言模型與 ZeroGPU,即時 IME 風格候選條。"
 
104
  )
105
 
106
- # 經典候選欄:水平排列
107
- suggestions = gr.Radio(
108
- [], label="", interactive=True, type="value",
109
- elem_id="suggestions-bar", elem_classes="candidate-list"
110
- )
111
-
112
- # 輸入區與按鈕:單行輸入框 + 小按鈕 + 自動預測開關
113
  with gr.Row():
 
 
 
 
114
  input_text = gr.Textbox(
115
- label="", placeholder="請輸入拼音或文字…", lines=1, max_lines=1
 
116
  )
117
- gpu_button = gr.Button("建議")
118
- auto_predict = gr.Checkbox(value=True, label="自動預測 (輸入框內容變更時觸發)")
119
 
120
- # 進階參數設定(可折疊)
 
 
 
121
  with gr.Accordion("進階設定", open=False):
122
  model_selector = gr.Dropdown(
123
  MODEL_LIST, value=MODEL_LIST[0], label="模型"
@@ -128,15 +128,18 @@ with gr.Blocks(css=custom_css) as demo:
128
  m_slider = gr.Slider(
129
  minimum=1, maximum=30, step=1, value=6, label="M(建議數/Beam 數)"
130
  )
 
 
 
131
 
132
  # 事件綁定
133
- gpu_button.click(
134
  fn=suggest_next,
135
  inputs=[input_text, model_selector, k_slider, m_slider],
136
  outputs=suggestions,
137
  )
138
  input_text.change(
139
- fn=suggest_on_change,
140
  inputs=[input_text, model_selector, k_slider, m_slider, auto_predict],
141
  outputs=suggestions,
142
  )
@@ -146,4 +149,4 @@ with gr.Blocks(css=custom_css) as demo:
146
  outputs=input_text,
147
  )
148
 
149
- demo.launch()
 
36
  @spaces.GPU
37
  def suggest_next(text, model_name, k, m):
38
  """
39
+ 使用 Beam Search 產生 m 條候選,並一次更新候選列表,轉繁體並編號。
40
  """
41
  gen_pipe = get_pipeline(model_name)
42
  outs = gen_pipe(
 
47
  do_sample=False,
48
  early_stopping=True
49
  )
50
+ # 提取、過濾並轉繁體
51
  suggestions = [out["generated_text"][len(text):].strip() for out in outs]
52
  suggestions = [s for s in suggestions if s]
 
53
  suggestions = [cc.convert(s) for s in suggestions]
54
+ # 編號候選
55
+ numbered = [f"{i+1}. {s}" for i, s in enumerate(suggestions)]
56
+ return update(choices=numbered, value=None)
57
 
 
58
 
59
  def append_suggestion(current, choice):
60
  if choice is None:
61
  return current
62
+ text = choice.split(". ", 1)[1] if ". " in choice else choice
63
+ return current + text
 
 
 
 
 
 
 
 
64
 
65
  # 自訂 CSS:模擬經典中文輸入法候選欄樣式
66
  custom_css = """
67
+ #suggestions-bar {
68
+ margin-bottom: 8px;
69
+ }
70
  #suggestions-bar .candidate-list {
71
  display: flex;
72
+ gap: 8px;
73
+ background: #fff;
74
+ border: 1px solid #999;
75
  border-radius: 4px;
76
+ padding: 4px 6px;
77
+ overflow-x: auto;
78
+ white-space: nowrap;
79
  }
80
  #suggestions-bar .candidate-list input[type=radio] {
81
  display: none;
82
  }
83
  #suggestions-bar .candidate-list label {
84
+ position: relative;
85
  cursor: pointer;
86
+ padding: 4px 8px;
87
+ font-size: 14px;
88
  }
89
  #suggestions-bar .candidate-list label:hover {
90
+ background: #f5f5f5;
91
  }
92
  #suggestions-bar .candidate-list input[type=radio]:checked + label {
93
+ background: #e6f7ff;
94
+ border: 1px solid #1890ff;
95
  }
96
  """
97
 
98
  with gr.Blocks(css=custom_css) as demo:
99
+ # 標題與說明
100
  gr.Markdown(
101
+ "## 🇹🇼 繁體中文 IME 加速器 \
102
+ "
103
+ "結合小型語言模型與 ZeroGPU,提供即時輸入法風格候選欄。"
104
  )
105
 
106
+ # 候選條與輸入框並排
 
 
 
 
 
 
107
  with gr.Row():
108
+ suggestions = gr.Radio(
109
+ [], label="", interactive=True, type="value",
110
+ elem_id="suggestions-bar", elem_classes="candidate-list"
111
+ )
112
  input_text = gr.Textbox(
113
+ label="", placeholder="請輸入拼音或文字…",
114
+ lines=1, max_lines=1, elem_id="input-box", full_width=True
115
  )
 
 
116
 
117
+ # 預測按鈕(置於下方)
118
+ predict_button = gr.Button("預測", elem_id="predict-button")
119
+
120
+ # 進階參數設定(可摺疊)
121
  with gr.Accordion("進階設定", open=False):
122
  model_selector = gr.Dropdown(
123
  MODEL_LIST, value=MODEL_LIST[0], label="模型"
 
128
  m_slider = gr.Slider(
129
  minimum=1, maximum=30, step=1, value=6, label="M(建議數/Beam 數)"
130
  )
131
+ auto_predict = gr.Checkbox(
132
+ value=True, label="自動預測(內容變更時觸發)", elem_id="auto-predict"
133
+ )
134
 
135
  # 事件綁定
136
+ predict_button.click(
137
  fn=suggest_next,
138
  inputs=[input_text, model_selector, k_slider, m_slider],
139
  outputs=suggestions,
140
  )
141
  input_text.change(
142
+ fn=lambda txt, mdl, k, m, auto: suggest_next(txt, mdl, k, m) if auto else update(choices=[], value=None),
143
  inputs=[input_text, model_selector, k_slider, m_slider, auto_predict],
144
  outputs=suggestions,
145
  )
 
149
  outputs=input_text,
150
  )
151
 
152
+ demo.launch()