|
|
|
import spaces |
|
import gradio as gr |
|
from gradio import update |
|
from functools import lru_cache |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
from opencc import OpenCC |
|
|
|
|
|
cc = OpenCC('s2t') |
|
|
|
|
|
MODEL_LIST = [ |
|
"liswei/Taiwan-ELM-270M", |
|
"Mxode/SmolLM-Chinese-180M", |
|
"flyingfishinwater/chinese-baby-llama2", |
|
"unsloth/gemma-3-1b-pt", |
|
"ckiplab/gpt2-tiny-chinese", |
|
"ckiplab/gpt2-base-chinese", |
|
"liswei/Taiwan-ELM-1_1B", |
|
"benchang1110/Qwen2.5-Taiwan-1.5B-Instruct", |
|
"benchang1110/Taiwan-tinyllama-v1.0-base", |
|
"lianghsun/Llama-3.2-Taiwan-3B", |
|
"twinkle-ai/Llama-3.2-3B-F1-Instruct", |
|
"Epiculous/Violet_Twilight-v0.2", |
|
] |
|
|
|
def merge_common_prefixes(suggestions, min_len=2): |
|
""" |
|
合併具有共同前綴的建議: |
|
- 找出所有長度 ≥ min_len 的共同前綴 |
|
- 將這些前綴作為新建議,移除原有被合併的項目 |
|
""" |
|
prefixes = [] |
|
to_remove = set() |
|
|
|
for i in range(len(suggestions)): |
|
for j in range(i+1, len(suggestions)): |
|
s1, s2 = suggestions[i], suggestions[j] |
|
|
|
common = ''.join(c1 for c1, c2 in zip(s1, s2) if c1 == c2) |
|
if len(common) >= min_len: |
|
prefixes.append(common) |
|
to_remove.update([s1, s2]) |
|
|
|
|
|
unique_prefixes = [] |
|
for p in prefixes: |
|
if p not in unique_prefixes: |
|
unique_prefixes.append(p) |
|
|
|
|
|
remainder = [s for s in suggestions if s not in to_remove] |
|
return unique_prefixes + remainder |
|
|
|
@lru_cache(maxsize=8) |
|
def get_pipeline(model_name): |
|
tok = AutoTokenizer.from_pretrained(model_name) |
|
mdl = AutoModelForCausalLM.from_pretrained( |
|
model_name, weights_only=False, trust_remote_code=True |
|
) |
|
mdl.to("cuda") |
|
return pipeline("text-generation", model=mdl, tokenizer=tok, device=0) |
|
|
|
@spaces.GPU |
|
def suggest_next(text, model_name, k, m, num_beam_groups, diversity_penalty): |
|
""" |
|
使用 Diverse Beam Search 產生 m 條候選: |
|
- num_beams = m |
|
- num_beam_groups, diversity_penalty 可調整多樣性 |
|
之後轉繁體、去重、合併共同前綴後回傳。 |
|
""" |
|
gen_pipe = get_pipeline(model_name) |
|
|
|
gen_kwargs = { |
|
"max_new_tokens": k, |
|
"num_beams": m, |
|
"num_return_sequences": m, |
|
"do_sample": False, |
|
"early_stopping": True, |
|
} |
|
if diversity_penalty and diversity_penalty > 0: |
|
gen_kwargs["num_beam_groups"] = num_beam_groups |
|
gen_kwargs["diversity_penalty"] = diversity_penalty |
|
|
|
outs = gen_pipe(text, **gen_kwargs) |
|
|
|
|
|
raw_suggestions = [] |
|
for out in outs: |
|
snippet = out["generated_text"][len(text):].strip() |
|
if not snippet: |
|
continue |
|
converted = cc.convert(snippet).strip() |
|
raw_suggestions.append(converted) |
|
|
|
|
|
unique_suggestions = [] |
|
seen = set() |
|
for s in raw_suggestions: |
|
key = s |
|
if key not in seen: |
|
seen.add(key) |
|
unique_suggestions.append(key) |
|
|
|
|
|
merged_prefixes = merge_common_prefixes(unique_suggestions, min_len=2) |
|
|
|
|
|
final_suggestions = [] |
|
seen_final = set() |
|
for s in merged_prefixes: |
|
key = s.strip() |
|
if key and key not in seen_final: |
|
seen_final.add(key) |
|
final_suggestions.append(key) |
|
|
|
return update(choices=final_suggestions, value=None) |
|
|
|
|
|
def append_suggestion(current, choice): |
|
if choice is None: |
|
return current |
|
|
|
return current + choice |
|
|
|
|
|
custom_css = """ |
|
#suggestions-bar { |
|
width: 100%; |
|
margin-bottom: 8px; |
|
} |
|
#suggestions-bar .candidate-list { |
|
display: flex; |
|
gap: 8px; |
|
background: #fff; |
|
border: 1px solid #999; |
|
border-radius: 4px; |
|
padding: 6px; |
|
overflow-x: auto; |
|
white-space: nowrap; |
|
} |
|
#suggestions-bar .candidate-list label { |
|
cursor: pointer; |
|
padding: 6px 10px; |
|
font-size: 16px; |
|
} |
|
#suggestions-bar .candidate-list label:hover { |
|
background: #f5f5f5; |
|
} |
|
#suggestions-bar .candidate-list input[type=radio]:checked + label { |
|
background: #e6f7ff; |
|
border: 1px solid #1890ff; |
|
} |
|
#input-box textarea { |
|
width: 100%; |
|
font-size: 16px; |
|
padding: 6px; |
|
box-sizing: border-box; |
|
overflow: hidden; |
|
resize: none; |
|
} |
|
#predict-button { |
|
margin-top: 8px; |
|
width: 100%; |
|
} |
|
/* 手機響應式 */ |
|
@media only screen and (max-width: 600px) { |
|
#suggestions-bar .candidate-list label { |
|
padding: 8px; |
|
font-size: 18px; |
|
} |
|
#predict-button { |
|
font-size: 18px; |
|
} |
|
} |
|
""" |
|
|
|
|
|
auto_height_js = """ |
|
<script> |
|
window.addEventListener('load', () => { |
|
const textarea = document.querySelector('#input-box textarea'); |
|
if (!textarea) return; |
|
textarea.style.height = 'auto'; |
|
textarea.addEventListener('input', function() { |
|
this.style.height = 'auto'; |
|
this.style.height = this.scrollHeight + 'px'; |
|
}); |
|
}); |
|
</script> |
|
""" |
|
|
|
with gr.Blocks(css=custom_css) as demo: |
|
gr.HTML(auto_height_js) |
|
gr.Markdown( |
|
"## 🇹🇼 繁體中文 IME 加速器 \ |
|
" |
|
"結合小型語言模型與 ZeroGPU,提供即時輸入法風格候選欄。" |
|
) |
|
|
|
with gr.Column(): |
|
suggestions = gr.Radio( |
|
[], label="", interactive=True, type="value", |
|
elem_id="suggestions-bar", elem_classes="candidate-list" |
|
) |
|
input_text = gr.Textbox( |
|
label="", placeholder="請輸入拼音或文字…", |
|
lines=1, max_lines=20, elem_id="input-box" |
|
) |
|
|
|
|
|
with gr.Row(): |
|
auto_predict = gr.Checkbox( |
|
value=True, label="自動預測(內容變更時觸發)", elem_id="auto-predict" |
|
) |
|
predict_button = gr.Button( |
|
"預測", elem_id="predict-button" |
|
) |
|
|
|
with gr.Accordion("進階設定", open=False): |
|
model_selector = gr.Dropdown( |
|
MODEL_LIST, value=MODEL_LIST[0], label="模型" |
|
) |
|
k_slider = gr.Slider( |
|
minimum=1, maximum=50, step=1, value=10, label="K(最大新詞元數)" |
|
) |
|
m_slider = gr.Slider( |
|
minimum=1, maximum=30, step=1, value=30, label="M(建議數/Beam 數)" |
|
) |
|
group_slider = gr.Slider( |
|
minimum=1, maximum=30, step=1, value=30, |
|
label="Beam 群組數 (num_beam_groups)" |
|
) |
|
diversity_penalty_slider = gr.Slider( |
|
minimum=0.0, maximum=2.0, step=0.1, value=1.0, |
|
label="多樣性懲罰 (diversity_penalty)" |
|
) |
|
|
|
|
|
predict_button.click( |
|
fn=suggest_next, |
|
inputs=[ |
|
input_text, |
|
model_selector, |
|
k_slider, |
|
m_slider, |
|
group_slider, |
|
diversity_penalty_slider |
|
], |
|
outputs=suggestions, |
|
) |
|
input_text.change( |
|
fn=lambda txt, mdl, k, m, g, d, auto: ( |
|
suggest_next(txt, mdl, k, m, g, d) |
|
if auto else update(choices=[], value=None) |
|
), |
|
inputs=[ |
|
input_text, |
|
model_selector, |
|
k_slider, |
|
m_slider, |
|
group_slider, |
|
diversity_penalty_slider, |
|
auto_predict |
|
], |
|
outputs=suggestions, |
|
) |
|
suggestions.change( |
|
fn=append_suggestion, |
|
inputs=[input_text, suggestions], |
|
outputs=input_text, |
|
) |
|
|
|
demo.launch() |