import torch from vggt.models.vggt import VGGT from vggt.utils.load_fn import load_and_preprocess_images device = "cuda" if torch.cuda.is_available() else "cpu" # bfloat16 is supported on Ampere GPUs (Compute Capability 8.0+) dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16 # Initialize the model and load the pretrained weights. # This will automatically download the model weights the first time it's run, which may take a while. model = VGGT.from_pretrained("facebook/VGGT-1B").to(device) # Load and preprocess example images (replace with your own image paths) image_names = ["path/to/imageA.png", "path/to/imageB.png", "path/to/imageC.png"] images = load_and_preprocess_images(image_names).to(device) with torch.no_grad(): with torch.cuda.amp.autocast(dtype=dtype): # Predict attributes including cameras, depth maps, and point maps. predictions = model(images)