Spaces:
Runtime error
Runtime error
File size: 12,730 Bytes
495e63f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import random
import numpy as np
import glob
import os
import copy
import torch
import torch.nn.functional as F
# Configure CUDA settings
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
import argparse
from pathlib import Path
import trimesh
import pycolmap
from vggt.models.vggt import VGGT
from vggt.utils.load_fn import load_and_preprocess_images_square
from vggt.utils.pose_enc import pose_encoding_to_extri_intri
from vggt.utils.geometry import unproject_depth_map_to_point_map
from vggt.utils.helper import create_pixel_coordinate_grid, randomly_limit_trues
from vggt.dependency.track_predict import predict_tracks
from vggt.dependency.np_to_pycolmap import batch_np_matrix_to_pycolmap, batch_np_matrix_to_pycolmap_wo_track
# TODO: add support for masks
# TODO: add iterative BA
# TODO: add support for radial distortion, which needs extra_params
# TODO: test with more cases
# TODO: test different camera types
def parse_args():
parser = argparse.ArgumentParser(description="VGGT Demo")
parser.add_argument("--scene_dir", type=str, required=True, help="Directory containing the scene images")
parser.add_argument("--seed", type=int, default=42, help="Random seed for reproducibility")
parser.add_argument("--use_ba", action="store_true", default=False, help="Use BA for reconstruction")
######### BA parameters #########
parser.add_argument(
"--max_reproj_error", type=float, default=8.0, help="Maximum reprojection error for reconstruction"
)
parser.add_argument("--shared_camera", action="store_true", default=False, help="Use shared camera for all images")
parser.add_argument("--camera_type", type=str, default="SIMPLE_PINHOLE", help="Camera type for reconstruction")
parser.add_argument("--vis_thresh", type=float, default=0.2, help="Visibility threshold for tracks")
parser.add_argument("--query_frame_num", type=int, default=8, help="Number of frames to query")
parser.add_argument("--max_query_pts", type=int, default=4096, help="Maximum number of query points")
parser.add_argument(
"--fine_tracking", action="store_true", default=True, help="Use fine tracking (slower but more accurate)"
)
parser.add_argument(
"--conf_thres_value", type=float, default=5.0, help="Confidence threshold value for depth filtering (wo BA)"
)
return parser.parse_args()
def run_VGGT(model, images, dtype, resolution=518):
# images: [B, 3, H, W]
assert len(images.shape) == 4
assert images.shape[1] == 3
# hard-coded to use 518 for VGGT
images = F.interpolate(images, size=(resolution, resolution), mode="bilinear", align_corners=False)
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=dtype):
images = images[None] # add batch dimension
aggregated_tokens_list, ps_idx = model.aggregator(images)
# Predict Cameras
pose_enc = model.camera_head(aggregated_tokens_list)[-1]
# Extrinsic and intrinsic matrices, following OpenCV convention (camera from world)
extrinsic, intrinsic = pose_encoding_to_extri_intri(pose_enc, images.shape[-2:])
# Predict Depth Maps
depth_map, depth_conf = model.depth_head(aggregated_tokens_list, images, ps_idx)
extrinsic = extrinsic.squeeze(0).cpu().numpy()
intrinsic = intrinsic.squeeze(0).cpu().numpy()
depth_map = depth_map.squeeze(0).cpu().numpy()
depth_conf = depth_conf.squeeze(0).cpu().numpy()
return extrinsic, intrinsic, depth_map, depth_conf
def demo_fn(args):
# Print configuration
print("Arguments:", vars(args))
# Set seed for reproducibility
np.random.seed(args.seed)
torch.manual_seed(args.seed)
random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed) # for multi-GPU
print(f"Setting seed as: {args.seed}")
# Set device and dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
print(f"Using dtype: {dtype}")
# Run VGGT for camera and depth estimation
model = VGGT()
_URL = "https://huggingface.co/facebook/VGGT-1B/resolve/main/model.pt"
model.load_state_dict(torch.hub.load_state_dict_from_url(_URL))
model.eval()
model = model.to(device)
print(f"Model loaded")
# Get image paths and preprocess them
image_dir = os.path.join(args.scene_dir, "images")
image_path_list = glob.glob(os.path.join(image_dir, "*"))
if len(image_path_list) == 0:
raise ValueError(f"No images found in {image_dir}")
base_image_path_list = [os.path.basename(path) for path in image_path_list]
# Load images and original coordinates
# Load Image in 1024, while running VGGT with 518
vggt_fixed_resolution = 518
img_load_resolution = 1024
images, original_coords = load_and_preprocess_images_square(image_path_list, img_load_resolution)
images = images.to(device)
original_coords = original_coords.to(device)
print(f"Loaded {len(images)} images from {image_dir}")
# Run VGGT to estimate camera and depth
# Run with 518x518 images
extrinsic, intrinsic, depth_map, depth_conf = run_VGGT(model, images, dtype, vggt_fixed_resolution)
points_3d = unproject_depth_map_to_point_map(depth_map, extrinsic, intrinsic)
if args.use_ba:
image_size = np.array(images.shape[-2:])
scale = img_load_resolution / vggt_fixed_resolution
shared_camera = args.shared_camera
with torch.cuda.amp.autocast(dtype=dtype):
# Predicting Tracks
# Using VGGSfM tracker instead of VGGT tracker for efficiency
# VGGT tracker requires multiple backbone runs to query different frames (this is a problem caused by the training process)
# Will be fixed in VGGT v2
# You can also change the pred_tracks to tracks from any other methods
# e.g., from COLMAP, from CoTracker, or by chaining 2D matches from Lightglue/LoFTR.
pred_tracks, pred_vis_scores, pred_confs, points_3d, points_rgb = predict_tracks(
images,
conf=depth_conf,
points_3d=points_3d,
masks=None,
max_query_pts=args.max_query_pts,
query_frame_num=args.query_frame_num,
keypoint_extractor="aliked+sp",
fine_tracking=args.fine_tracking,
)
torch.cuda.empty_cache()
# rescale the intrinsic matrix from 518 to 1024
intrinsic[:, :2, :] *= scale
track_mask = pred_vis_scores > args.vis_thresh
# TODO: radial distortion, iterative BA, masks
reconstruction, valid_track_mask = batch_np_matrix_to_pycolmap(
points_3d,
extrinsic,
intrinsic,
pred_tracks,
image_size,
masks=track_mask,
max_reproj_error=args.max_reproj_error,
shared_camera=shared_camera,
camera_type=args.camera_type,
points_rgb=points_rgb,
)
if reconstruction is None:
raise ValueError("No reconstruction can be built with BA")
# Bundle Adjustment
ba_options = pycolmap.BundleAdjustmentOptions()
pycolmap.bundle_adjustment(reconstruction, ba_options)
reconstruction_resolution = img_load_resolution
else:
conf_thres_value = args.conf_thres_value
max_points_for_colmap = 100000 # randomly sample 3D points
shared_camera = False # in the feedforward manner, we do not support shared camera
camera_type = "PINHOLE" # in the feedforward manner, we only support PINHOLE camera
image_size = np.array([vggt_fixed_resolution, vggt_fixed_resolution])
num_frames, height, width, _ = points_3d.shape
points_rgb = F.interpolate(
images, size=(vggt_fixed_resolution, vggt_fixed_resolution), mode="bilinear", align_corners=False
)
points_rgb = (points_rgb.cpu().numpy() * 255).astype(np.uint8)
points_rgb = points_rgb.transpose(0, 2, 3, 1)
# (S, H, W, 3), with x, y coordinates and frame indices
points_xyf = create_pixel_coordinate_grid(num_frames, height, width)
conf_mask = depth_conf >= conf_thres_value
# at most writing 100000 3d points to colmap reconstruction object
conf_mask = randomly_limit_trues(conf_mask, max_points_for_colmap)
points_3d = points_3d[conf_mask]
points_xyf = points_xyf[conf_mask]
points_rgb = points_rgb[conf_mask]
print("Converting to COLMAP format")
reconstruction = batch_np_matrix_to_pycolmap_wo_track(
points_3d,
points_xyf,
points_rgb,
extrinsic,
intrinsic,
image_size,
shared_camera=shared_camera,
camera_type=camera_type,
)
reconstruction_resolution = vggt_fixed_resolution
reconstruction = rename_colmap_recons_and_rescale_camera(
reconstruction,
base_image_path_list,
original_coords.cpu().numpy(),
img_size=reconstruction_resolution,
shift_point2d_to_original_res=True,
shared_camera=shared_camera,
)
print(f"Saving reconstruction to {args.scene_dir}/sparse")
sparse_reconstruction_dir = os.path.join(args.scene_dir, "sparse")
os.makedirs(sparse_reconstruction_dir, exist_ok=True)
reconstruction.write(sparse_reconstruction_dir)
# Save point cloud for fast visualization
trimesh.PointCloud(points_3d, colors=points_rgb).export(os.path.join(args.scene_dir, "sparse/points.ply"))
return True
def rename_colmap_recons_and_rescale_camera(
reconstruction, image_paths, original_coords, img_size, shift_point2d_to_original_res=False, shared_camera=False
):
rescale_camera = True
for pyimageid in reconstruction.images:
# Reshaped the padded&resized image to the original size
# Rename the images to the original names
pyimage = reconstruction.images[pyimageid]
pycamera = reconstruction.cameras[pyimage.camera_id]
pyimage.name = image_paths[pyimageid - 1]
if rescale_camera:
# Rescale the camera parameters
pred_params = copy.deepcopy(pycamera.params)
real_image_size = original_coords[pyimageid - 1, -2:]
resize_ratio = max(real_image_size) / img_size
pred_params = pred_params * resize_ratio
real_pp = real_image_size / 2
pred_params[-2:] = real_pp # center of the image
pycamera.params = pred_params
pycamera.width = real_image_size[0]
pycamera.height = real_image_size[1]
if shift_point2d_to_original_res:
# Also shift the point2D to original resolution
top_left = original_coords[pyimageid - 1, :2]
for point2D in pyimage.points2D:
point2D.xy = (point2D.xy - top_left) * resize_ratio
if shared_camera:
# If shared_camera, all images share the same camera
# no need to rescale any more
rescale_camera = False
return reconstruction
if __name__ == "__main__":
args = parse_args()
with torch.no_grad():
demo_fn(args)
# Work in Progress (WIP)
"""
VGGT Runner Script
=================
A script to run the VGGT model for 3D reconstruction from image sequences.
Directory Structure
------------------
Input:
input_folder/
βββ images/ # Source images for reconstruction
Output:
output_folder/
βββ images/
βββ sparse/ # Reconstruction results
β βββ cameras.bin # Camera parameters (COLMAP format)
β βββ images.bin # Pose for each image (COLMAP format)
β βββ points3D.bin # 3D points (COLMAP format)
β βββ points.ply # Point cloud visualization file
βββ visuals/ # Visualization outputs TODO
Key Features
-----------
β’ Dual-mode Support: Run reconstructions using either VGGT or VGGT+BA
β’ Resolution Preservation: Maintains original image resolution in camera parameters and tracks
β’ COLMAP Compatibility: Exports results in standard COLMAP sparse reconstruction format
"""
|