File size: 6,231 Bytes
68185ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import { useState, useEffect, useRef, useCallback } from "react";
import {
  AutoModelForCausalLM,
  AutoTokenizer,
  TextStreamer,
} from "@huggingface/transformers";

interface LLMState {
  isLoading: boolean;
  isReady: boolean;
  error: string | null;
  progress: number;
}

interface LLMInstance {
  model: any;
  tokenizer: any;
}

let moduleCache: {
  [modelId: string]: {
    instance: LLMInstance | null;
    loadingPromise: Promise<LLMInstance> | null;
  };
} = {};

export const useLLM = (modelId?: string) => {
  const [state, setState] = useState<LLMState>({
    isLoading: false,
    isReady: false,
    error: null,
    progress: 0,
  });

  const instanceRef = useRef<LLMInstance | null>(null);
  const loadingPromiseRef = useRef<Promise<LLMInstance> | null>(null);

  const abortControllerRef = useRef<AbortController | null>(null);
  const pastKeyValuesRef = useRef<any>(null);

  const loadModel = useCallback(async () => {
    if (!modelId) {
      throw new Error("Model ID is required");
    }

    const MODEL_ID = `onnx-community/LFM2-${modelId}-ONNX`;

    if (!moduleCache[modelId]) {
      moduleCache[modelId] = {
        instance: null,
        loadingPromise: null,
      };
    }

    const cache = moduleCache[modelId];

    const existingInstance = instanceRef.current || cache.instance;
    if (existingInstance) {
      instanceRef.current = existingInstance;
      cache.instance = existingInstance;
      setState((prev) => ({ ...prev, isReady: true, isLoading: false }));
      return existingInstance;
    }

    const existingPromise = loadingPromiseRef.current || cache.loadingPromise;
    if (existingPromise) {
      try {
        const instance = await existingPromise;
        instanceRef.current = instance;
        cache.instance = instance;
        setState((prev) => ({ ...prev, isReady: true, isLoading: false }));
        return instance;
      } catch (error) {
        setState((prev) => ({
          ...prev,
          isLoading: false,
          error:
            error instanceof Error ? error.message : "Failed to load model",
        }));
        throw error;
      }
    }

    setState((prev) => ({
      ...prev,
      isLoading: true,
      error: null,
      progress: 0,
    }));

    abortControllerRef.current = new AbortController();

    const loadingPromise = (async () => {
      try {
        const progressCallback = (progress: any) => {
          // Only update progress for weights
          if (
            progress.status === "progress" &&
            progress.file.endsWith(".onnx_data")
          ) {
            const percentage = Math.round(
              (progress.loaded / progress.total) * 100,
            );
            setState((prev) => ({ ...prev, progress: percentage }));
          }
        };

        const tokenizer = await AutoTokenizer.from_pretrained(MODEL_ID, {
          progress_callback: progressCallback,
        });

        const model = await AutoModelForCausalLM.from_pretrained(MODEL_ID, {
          dtype: "q4f16",
          device: "webgpu",
          progress_callback: progressCallback,
        });

        const instance = { model, tokenizer };
        instanceRef.current = instance;
        cache.instance = instance;
        loadingPromiseRef.current = null;
        cache.loadingPromise = null;

        setState((prev) => ({
          ...prev,
          isLoading: false,
          isReady: true,
          progress: 100,
        }));
        return instance;
      } catch (error) {
        loadingPromiseRef.current = null;
        cache.loadingPromise = null;
        setState((prev) => ({
          ...prev,
          isLoading: false,
          error:
            error instanceof Error ? error.message : "Failed to load model",
        }));
        throw error;
      }
    })();

    loadingPromiseRef.current = loadingPromise;
    cache.loadingPromise = loadingPromise;
    return loadingPromise;
  }, [modelId]);

  const generateResponse = useCallback(
    async (
      messages: Array<{ role: string; content: string }>,
      tools: Array<any>,
      onToken?: (token: string) => void,
    ): Promise<string> => {
      const instance = instanceRef.current;
      if (!instance) {
        throw new Error("Model not loaded. Call loadModel() first.");
      }

      const { model, tokenizer } = instance;

      // Apply chat template with tools
      const input = tokenizer.apply_chat_template(messages, {
        tools,
        add_generation_prompt: true,
        return_dict: true,
      });

      const streamer = onToken
        ? new TextStreamer(tokenizer, {
            skip_prompt: true,
            skip_special_tokens: false,
            callback_function: (token: string) => {
              onToken(token);
            },
          })
        : undefined;

      // Generate the response
      const { sequences, past_key_values } = await model.generate({
        ...input,
        past_key_values: pastKeyValuesRef.current,
        max_new_tokens: 512,
        do_sample: false,
        streamer,
        return_dict_in_generate: true,
      });
      pastKeyValuesRef.current = past_key_values;

      // Decode the generated text with special tokens preserved (except final <|im_end|>) for tool call detection
      const response = tokenizer
        .batch_decode(sequences.slice(null, [input.input_ids.dims[1], null]), {
          skip_special_tokens: false,
        })[0]
        .replace(/<\|im_end\|>$/, "");

      return response;
    },
    [],
  );

  const clearPastKeyValues = useCallback(() => {
    pastKeyValuesRef.current = null;
  }, []);

  const cleanup = useCallback(() => {
    if (abortControllerRef.current) {
      abortControllerRef.current.abort();
    }
  }, []);

  useEffect(() => {
    return cleanup;
  }, [cleanup]);

  useEffect(() => {
    if (modelId && moduleCache[modelId]) {
      const existingInstance =
        instanceRef.current || moduleCache[modelId].instance;
      if (existingInstance) {
        instanceRef.current = existingInstance;
        setState((prev) => ({ ...prev, isReady: true }));
      }
    }
  }, [modelId]);

  return {
    ...state,
    loadModel,
    generateResponse,
    clearPastKeyValues,
    cleanup,
  };
};