Lhumpal commited on
Commit
53e3550
·
verified ·
1 Parent(s): 01f73f3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -43
app.py CHANGED
@@ -1,26 +1,3 @@
1
- # from fastapi import FastAPI
2
- # from fastapi.responses import JSONResponse
3
- # from fastapi import Request
4
- # from huggingface_hub import InferenceClient
5
-
6
- # app = FastAPI()
7
-
8
- # @app.post("/")
9
- # async def greet_json(request: Request):
10
- # input_data = await request.json()
11
- # # number = input_data.get("number")
12
-
13
- # # tripled_number = number * 2
14
- # # return {"message": f"Your input number is: {number}, your doubled number is: {tripled_number}"}
15
- # user_input = input_data.get("user_input")
16
-
17
- # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
18
- # # Get the response from the model
19
- # response = client(user_input)
20
-
21
- # # assistant_response = client.text_generation(user_input)
22
- # assistant_response = "I am assistant."
23
- # return {"assistant_message": f"Your input message is: {user_input}, assistant_response is: {response}"}
24
  from fastapi import FastAPI, HTTPException
25
  from pydantic import BaseModel
26
  from huggingface_hub import InferenceClient
@@ -31,16 +8,10 @@ app = FastAPI()
31
  # Get the token from the environment variable
32
  hf_token = os.environ.get("HF_TOKEN")
33
 
34
- if hf_token:
35
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
36
- else:
37
- raise ValueError("HF_TOKEN environment variable not set. Please add it as a secret in your Hugging Face Space.")
38
-
39
- # Rest of your code...
40
 
41
  class ChatRequest(BaseModel):
42
  message: str
43
- history: list[tuple[str, str]] = []
44
  system_message: str = "You are a friendly Chatbot."
45
  max_tokens: int = 512
46
  temperature: float = 0.7
@@ -52,25 +23,18 @@ class ChatResponse(BaseModel):
52
  @app.post("/chat", response_model=ChatResponse)
53
  async def chat(request: ChatRequest):
54
  try:
55
- messages = [{"role": "system", "content": request.system_message}]
56
- for val in request.history:
57
- if val[0]:
58
- messages.append({"role": "user", "content": val[0]})
59
- if val[1]:
60
- messages.append({"role": "assistant", "content": val[1]})
61
  messages.append({"role": "user", "content": request.message})
62
 
63
- response = ""
64
- for message in client.chat_completion(
65
  messages,
66
  max_tokens=request.max_tokens,
67
- stream=True,
68
  temperature=request.temperature,
69
  top_p=request.top_p,
70
- ):
71
- token = message.choices[0].delta.content
72
- response += token
73
-
74
  return {"response": response}
 
75
  except Exception as e:
76
  raise HTTPException(status_code=500, detail=str(e))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from fastapi import FastAPI, HTTPException
2
  from pydantic import BaseModel
3
  from huggingface_hub import InferenceClient
 
8
  # Get the token from the environment variable
9
  hf_token = os.environ.get("HF_TOKEN")
10
 
11
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
 
 
 
 
 
12
 
13
  class ChatRequest(BaseModel):
14
  message: str
 
15
  system_message: str = "You are a friendly Chatbot."
16
  max_tokens: int = 512
17
  temperature: float = 0.7
 
23
  @app.post("/chat", response_model=ChatResponse)
24
  async def chat(request: ChatRequest):
25
  try:
26
+ messages = []
27
+ messages.append({"role": "system", "content": request.system_message})
 
 
 
 
28
  messages.append({"role": "user", "content": request.message})
29
 
30
+ response = client.chat_completion(
 
31
  messages,
32
  max_tokens=request.max_tokens,
 
33
  temperature=request.temperature,
34
  top_p=request.top_p,
35
+ )
36
+
 
 
37
  return {"response": response}
38
+
39
  except Exception as e:
40
  raise HTTPException(status_code=500, detail=str(e))