Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,3 @@
|
|
1 |
-
# from fastapi import FastAPI
|
2 |
-
# from fastapi.responses import JSONResponse
|
3 |
-
# from fastapi import Request
|
4 |
-
# from huggingface_hub import InferenceClient
|
5 |
-
|
6 |
-
# app = FastAPI()
|
7 |
-
|
8 |
-
# @app.post("/")
|
9 |
-
# async def greet_json(request: Request):
|
10 |
-
# input_data = await request.json()
|
11 |
-
# # number = input_data.get("number")
|
12 |
-
|
13 |
-
# # tripled_number = number * 2
|
14 |
-
# # return {"message": f"Your input number is: {number}, your doubled number is: {tripled_number}"}
|
15 |
-
# user_input = input_data.get("user_input")
|
16 |
-
|
17 |
-
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
18 |
-
# # Get the response from the model
|
19 |
-
# response = client(user_input)
|
20 |
-
|
21 |
-
# # assistant_response = client.text_generation(user_input)
|
22 |
-
# assistant_response = "I am assistant."
|
23 |
-
# return {"assistant_message": f"Your input message is: {user_input}, assistant_response is: {response}"}
|
24 |
from fastapi import FastAPI, HTTPException
|
25 |
from pydantic import BaseModel
|
26 |
from huggingface_hub import InferenceClient
|
@@ -31,16 +8,10 @@ app = FastAPI()
|
|
31 |
# Get the token from the environment variable
|
32 |
hf_token = os.environ.get("HF_TOKEN")
|
33 |
|
34 |
-
|
35 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
|
36 |
-
else:
|
37 |
-
raise ValueError("HF_TOKEN environment variable not set. Please add it as a secret in your Hugging Face Space.")
|
38 |
-
|
39 |
-
# Rest of your code...
|
40 |
|
41 |
class ChatRequest(BaseModel):
|
42 |
message: str
|
43 |
-
history: list[tuple[str, str]] = []
|
44 |
system_message: str = "You are a friendly Chatbot."
|
45 |
max_tokens: int = 512
|
46 |
temperature: float = 0.7
|
@@ -52,25 +23,18 @@ class ChatResponse(BaseModel):
|
|
52 |
@app.post("/chat", response_model=ChatResponse)
|
53 |
async def chat(request: ChatRequest):
|
54 |
try:
|
55 |
-
messages = [
|
56 |
-
|
57 |
-
if val[0]:
|
58 |
-
messages.append({"role": "user", "content": val[0]})
|
59 |
-
if val[1]:
|
60 |
-
messages.append({"role": "assistant", "content": val[1]})
|
61 |
messages.append({"role": "user", "content": request.message})
|
62 |
|
63 |
-
response =
|
64 |
-
for message in client.chat_completion(
|
65 |
messages,
|
66 |
max_tokens=request.max_tokens,
|
67 |
-
stream=True,
|
68 |
temperature=request.temperature,
|
69 |
top_p=request.top_p,
|
70 |
-
)
|
71 |
-
|
72 |
-
response += token
|
73 |
-
|
74 |
return {"response": response}
|
|
|
75 |
except Exception as e:
|
76 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from huggingface_hub import InferenceClient
|
|
|
8 |
# Get the token from the environment variable
|
9 |
hf_token = os.environ.get("HF_TOKEN")
|
10 |
|
11 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
class ChatRequest(BaseModel):
|
14 |
message: str
|
|
|
15 |
system_message: str = "You are a friendly Chatbot."
|
16 |
max_tokens: int = 512
|
17 |
temperature: float = 0.7
|
|
|
23 |
@app.post("/chat", response_model=ChatResponse)
|
24 |
async def chat(request: ChatRequest):
|
25 |
try:
|
26 |
+
messages = []
|
27 |
+
messages.append({"role": "system", "content": request.system_message})
|
|
|
|
|
|
|
|
|
28 |
messages.append({"role": "user", "content": request.message})
|
29 |
|
30 |
+
response = client.chat_completion(
|
|
|
31 |
messages,
|
32 |
max_tokens=request.max_tokens,
|
|
|
33 |
temperature=request.temperature,
|
34 |
top_p=request.top_p,
|
35 |
+
)
|
36 |
+
|
|
|
|
|
37 |
return {"response": response}
|
38 |
+
|
39 |
except Exception as e:
|
40 |
raise HTTPException(status_code=500, detail=str(e))
|