Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from huggingface_hub import InferenceClient
|
4 |
import os
|
5 |
from datasets import load_dataset
|
6 |
|
|
|
7 |
app = FastAPI()
|
8 |
|
9 |
# Get the token from the environment variable
|
10 |
hf_token = os.environ.get("HF_TOKEN")
|
|
|
11 |
dataset = load_dataset("Lhumpal/youtube-hunting-beast-transcripts")
|
12 |
|
|
|
|
|
13 |
if hf_token:
|
14 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
|
15 |
else:
|
16 |
raise ValueError("HF_TOKEN environment variable not set. Please add it as a secret in your Hugging Face Space.")
|
17 |
|
|
|
|
|
18 |
class ChatRequest(BaseModel):
|
19 |
message: str
|
|
|
20 |
system_message: str = "You are a friendly Chatbot."
|
|
|
|
|
|
|
21 |
|
22 |
class ChatResponse(BaseModel):
|
23 |
response: str
|
24 |
-
|
25 |
@app.post("/chat", response_model=ChatResponse)
|
26 |
async def chat(request: ChatRequest):
|
27 |
try:
|
28 |
-
|
29 |
messages = [{"role": "system", "content": request.system_message}]
|
|
|
|
|
|
|
|
|
|
|
30 |
messages.append({"role": "user", "content": request.message})
|
31 |
|
32 |
response = ""
|
33 |
for message in client.chat_completion(
|
34 |
messages,
|
35 |
-
max_tokens=
|
36 |
-
|
|
|
|
|
37 |
):
|
38 |
token = message.choices[0].delta.content
|
39 |
response += token
|
40 |
|
41 |
return {"response": response}
|
42 |
except Exception as e:
|
43 |
-
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
+
# from fastapi import FastAPI
|
2 |
+
# from fastapi.responses import JSONResponse
|
3 |
+
# from fastapi import Request
|
4 |
+
# from huggingface_hub import InferenceClient
|
5 |
+
|
6 |
+
# app = FastAPI()
|
7 |
+
|
8 |
+
# @app.post("/")
|
9 |
+
# async def greet_json(request: Request):
|
10 |
+
# input_data = await request.json()
|
11 |
+
# # number = input_data.get("number")
|
12 |
+
|
13 |
+
# # tripled_number = number * 2
|
14 |
+
# # return {"message": f"Your input number is: {number}, your doubled number is: {tripled_number}"}
|
15 |
+
# user_input = input_data.get("user_input")
|
16 |
+
|
17 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
18 |
+
# # Get the response from the model
|
19 |
+
# response = client(user_input)
|
20 |
+
|
21 |
+
# # assistant_response = client.text_generation(user_input)
|
22 |
+
# assistant_response = "I am assistant."
|
23 |
+
# return {"assistant_message": f"Your input message is: {user_input}, assistant_response is: {response}"}
|
24 |
from fastapi import FastAPI, HTTPException
|
25 |
from pydantic import BaseModel
|
26 |
from huggingface_hub import InferenceClient
|
27 |
import os
|
28 |
from datasets import load_dataset
|
29 |
|
30 |
+
|
31 |
app = FastAPI()
|
32 |
|
33 |
# Get the token from the environment variable
|
34 |
hf_token = os.environ.get("HF_TOKEN")
|
35 |
+
|
36 |
dataset = load_dataset("Lhumpal/youtube-hunting-beast-transcripts")
|
37 |
|
38 |
+
|
39 |
+
|
40 |
if hf_token:
|
41 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
|
42 |
else:
|
43 |
raise ValueError("HF_TOKEN environment variable not set. Please add it as a secret in your Hugging Face Space.")
|
44 |
|
45 |
+
# Rest of your code...
|
46 |
+
|
47 |
class ChatRequest(BaseModel):
|
48 |
message: str
|
49 |
+
history: list[tuple[str, str]] = []
|
50 |
system_message: str = "You are a friendly Chatbot."
|
51 |
+
max_tokens: int = 512
|
52 |
+
temperature: float = 0.7
|
53 |
+
top_p: float = 0.95
|
54 |
|
55 |
class ChatResponse(BaseModel):
|
56 |
response: str
|
|
|
57 |
@app.post("/chat", response_model=ChatResponse)
|
58 |
async def chat(request: ChatRequest):
|
59 |
try:
|
60 |
+
|
61 |
messages = [{"role": "system", "content": request.system_message}]
|
62 |
+
for val in request.history:
|
63 |
+
if val[0]:
|
64 |
+
messages.append({"role": "user", "content": val[0]})
|
65 |
+
if val[1]:
|
66 |
+
messages.append({"role": "assistant", "content": val[1]})
|
67 |
messages.append({"role": "user", "content": request.message})
|
68 |
|
69 |
response = ""
|
70 |
for message in client.chat_completion(
|
71 |
messages,
|
72 |
+
max_tokens=request.max_tokens,
|
73 |
+
stream=True,
|
74 |
+
temperature=request.temperature,
|
75 |
+
top_p=request.top_p,
|
76 |
):
|
77 |
token = message.choices[0].delta.content
|
78 |
response += token
|
79 |
|
80 |
return {"response": response}
|
81 |
except Exception as e:
|
82 |
+
raise HTTPException(status_code=500, detail=str(e))
|