Lhumpal commited on
Commit
522e9d7
·
verified ·
1 Parent(s): b8fe7e2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -5
app.py CHANGED
@@ -1,43 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from fastapi import FastAPI, HTTPException
2
  from pydantic import BaseModel
3
  from huggingface_hub import InferenceClient
4
  import os
5
  from datasets import load_dataset
6
 
 
7
  app = FastAPI()
8
 
9
  # Get the token from the environment variable
10
  hf_token = os.environ.get("HF_TOKEN")
 
11
  dataset = load_dataset("Lhumpal/youtube-hunting-beast-transcripts")
12
 
 
 
13
  if hf_token:
14
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
15
  else:
16
  raise ValueError("HF_TOKEN environment variable not set. Please add it as a secret in your Hugging Face Space.")
17
 
 
 
18
  class ChatRequest(BaseModel):
19
  message: str
 
20
  system_message: str = "You are a friendly Chatbot."
 
 
 
21
 
22
  class ChatResponse(BaseModel):
23
  response: str
24
-
25
  @app.post("/chat", response_model=ChatResponse)
26
  async def chat(request: ChatRequest):
27
  try:
28
- # Use only the latest message, no history
29
  messages = [{"role": "system", "content": request.system_message}]
 
 
 
 
 
30
  messages.append({"role": "user", "content": request.message})
31
 
32
  response = ""
33
  for message in client.chat_completion(
34
  messages,
35
- max_tokens=512,
36
- temperature=0.7,
 
 
37
  ):
38
  token = message.choices[0].delta.content
39
  response += token
40
 
41
  return {"response": response}
42
  except Exception as e:
43
- raise HTTPException(status_code=500, detail=str(e))
 
1
+ # from fastapi import FastAPI
2
+ # from fastapi.responses import JSONResponse
3
+ # from fastapi import Request
4
+ # from huggingface_hub import InferenceClient
5
+
6
+ # app = FastAPI()
7
+
8
+ # @app.post("/")
9
+ # async def greet_json(request: Request):
10
+ # input_data = await request.json()
11
+ # # number = input_data.get("number")
12
+
13
+ # # tripled_number = number * 2
14
+ # # return {"message": f"Your input number is: {number}, your doubled number is: {tripled_number}"}
15
+ # user_input = input_data.get("user_input")
16
+
17
+ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
18
+ # # Get the response from the model
19
+ # response = client(user_input)
20
+
21
+ # # assistant_response = client.text_generation(user_input)
22
+ # assistant_response = "I am assistant."
23
+ # return {"assistant_message": f"Your input message is: {user_input}, assistant_response is: {response}"}
24
  from fastapi import FastAPI, HTTPException
25
  from pydantic import BaseModel
26
  from huggingface_hub import InferenceClient
27
  import os
28
  from datasets import load_dataset
29
 
30
+
31
  app = FastAPI()
32
 
33
  # Get the token from the environment variable
34
  hf_token = os.environ.get("HF_TOKEN")
35
+
36
  dataset = load_dataset("Lhumpal/youtube-hunting-beast-transcripts")
37
 
38
+
39
+
40
  if hf_token:
41
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
42
  else:
43
  raise ValueError("HF_TOKEN environment variable not set. Please add it as a secret in your Hugging Face Space.")
44
 
45
+ # Rest of your code...
46
+
47
  class ChatRequest(BaseModel):
48
  message: str
49
+ history: list[tuple[str, str]] = []
50
  system_message: str = "You are a friendly Chatbot."
51
+ max_tokens: int = 512
52
+ temperature: float = 0.7
53
+ top_p: float = 0.95
54
 
55
  class ChatResponse(BaseModel):
56
  response: str
 
57
  @app.post("/chat", response_model=ChatResponse)
58
  async def chat(request: ChatRequest):
59
  try:
60
+
61
  messages = [{"role": "system", "content": request.system_message}]
62
+ for val in request.history:
63
+ if val[0]:
64
+ messages.append({"role": "user", "content": val[0]})
65
+ if val[1]:
66
+ messages.append({"role": "assistant", "content": val[1]})
67
  messages.append({"role": "user", "content": request.message})
68
 
69
  response = ""
70
  for message in client.chat_completion(
71
  messages,
72
+ max_tokens=request.max_tokens,
73
+ stream=True,
74
+ temperature=request.temperature,
75
+ top_p=request.top_p,
76
  ):
77
  token = message.choices[0].delta.content
78
  response += token
79
 
80
  return {"response": response}
81
  except Exception as e:
82
+ raise HTTPException(status_code=500, detail=str(e))