Spaces:
Running
Running
# scam_checker_app.py | |
import gradio as gr | |
from transformers import pipeline | |
# Load pre-trained model (you can later fine-tune your own) | |
classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection") | |
def check_scam(message): | |
result = classifier(message)[0] | |
label = result['label'] | |
if label == "FAKE": | |
verdict = "β οΈ This message is likely a SCAM or FAKE" | |
elif label == "REAL": | |
verdict = "β This message seems SAFE" | |
else: | |
verdict = "β Unable to determine" | |
return verdict | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=check_scam, | |
inputs=gr.Textbox(lines=6, placeholder="Paste suspicious message or email here..."), | |
outputs="text", | |
title="π Scam & Spam Message Checker", | |
description="Paste any message or email to check if it's likely to be a scam or fake using AI.", | |
) | |
demo.launch() |