Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import os | |
import shutil | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
from easydict import EasyDict as edict | |
from PIL import Image | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
import requests | |
import base64 | |
import io | |
import tempfile | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
NODE_SERVER_UPLOAD_URL = "https://viverse-backend.onrender.com/api/upload-rigged-model" | |
# Funciones auxiliares | |
def start_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
def end_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
shutil.rmtree(user_dir) | |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]: | |
images = [image[0] for image in images] | |
processed_images = [pipeline.preprocess_image(image) for image in images] | |
return processed_images | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
def image_to_3d( | |
multiimages: List[Tuple[Image.Image, str]], | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
multiimage_algo: Literal["multidiffusion", "stochastic"], | |
req: gr.Request, | |
) -> Tuple[dict, str]: | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
outputs = pipeline.run_multi_image( | |
[image[0] for image in multiimages], | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
mode=multiimage_algo, | |
) | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
video_path = os.path.join(user_dir, 'sample.mp4') | |
imageio.mimsave(video_path, video, fps=15) | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
torch.cuda.empty_cache() | |
return state, video_path | |
def extract_glb( | |
state: dict, | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> Tuple[str, str]: | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, mesh = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = os.path.join(user_dir, 'sample.glb') | |
glb.export(glb_path) | |
torch.cuda.empty_cache() | |
return glb_path, glb_path | |
def generate_model_from_images_and_upload( | |
image_inputs: List[Dict[str, Any]], | |
input_type: str, | |
seed_val: int, | |
ss_guidance_strength_val: float, | |
ss_sampling_steps_val: int, | |
slat_guidance_strength_val: float, | |
slat_sampling_steps_val: int, | |
multiimage_algo_val: str, | |
mesh_simplify_val: float, | |
texture_size_val: int, | |
model_description: str, | |
req: gr.Request | |
) -> str: | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
# --- DEBUG LOGS --- | |
print(f"Python DEBUG: Raw image_inputs (as received by function): {image_inputs}") | |
print(f"Python DEBUG: Type of image_inputs: {type(image_inputs)}") | |
if isinstance(image_inputs, list): | |
print(f"Python DEBUG: Length of image_inputs list: {len(image_inputs)}") | |
if len(image_inputs) > 0 and isinstance(image_inputs[0], dict): | |
print(f"Python DEBUG: First element of image_inputs (should be a dict): {image_inputs[0]}") | |
print(f"Python DEBUG: Type of first element: {type(image_inputs[0])}") | |
print(f"Python DEBUG: Received input_type from Node.js: '{input_type}'") # Should always be 'url' now | |
# --- END DEBUG LOGS --- | |
pil_images = [] | |
image_basenames_for_prompt = [] | |
for i, file_data_obj in enumerate(image_inputs): # file_data_obj is one dict from the list | |
img_to_open_path = None | |
current_image_name = file_data_obj.get('name', f"image_{i}.png") | |
print(f"Python DEBUG: Processing item {i}: {file_data_obj}, current_image_name: {current_image_name}") | |
# For URLs (which is now always the case from Node.js), | |
# Gradio should have downloaded the image and put its local path in file_data_obj.get('path') | |
img_to_open_path = file_data_obj.get('path') | |
if not img_to_open_path: | |
print(f"Error: 'path' was missing in item {i}: {file_data_obj}. Skipping.") | |
continue | |
print(f"Python INFO: Using Gradio-provided path for '{current_image_name}': {img_to_open_path}") | |
# Now, process the image using img_to_open_path | |
try: | |
print(f"Python INFO: Opening image from path: {img_to_open_path} (intended name for prompt: {current_image_name})") | |
img = Image.open(img_to_open_path) | |
image_basenames_for_prompt.append(os.path.splitext(current_image_name)[0] or f"image_{i}") | |
if img.mode == 'RGBA' or img.mode == 'P': | |
print(f"Converting image '{current_image_name}' from {img.mode} to RGB") | |
img = img.convert('RGB') | |
processed_img = pipeline.preprocess_image(img) | |
pil_images.append(processed_img) | |
print(f"Image '{current_image_name}' (item {i+1}) processed successfully and added to list.") | |
except Exception as e_img_proc: | |
print(f"Error opening or processing image at '{img_to_open_path}' (item {i}, name: '{current_image_name}'): {e_img_proc}") | |
import traceback | |
traceback.print_exc() | |
# Continue to next image if one fails | |
# No finally block needed here anymore for deleting temp base64 files | |
if not pil_images: | |
print("Error: No images could be processed from the input. Aborting generation.") | |
raise gr.Error("Failed to process any input images.") | |
print(f"Python INFO: Total images processed for pipeline: {len(pil_images)}") | |
effective_model_description = model_description | |
if not effective_model_description and image_basenames_for_prompt: | |
effective_model_description = "_prompted_by_" + "_and_".join(image_basenames_for_prompt) | |
effective_model_description = effective_model_description[:100] # Keep it reasonably short | |
elif not effective_model_description: | |
effective_model_description = "ImageGenModel" | |
print(f"Python INFO: Using model_description for upload: {effective_model_description}") | |
# Generate 3D model using the Trellis image pipeline | |
try: | |
print(f"Python INFO: Calling internal image_to_3d with {len(pil_images)} images.") | |
# The image_to_3d function expects a list of tuples (PIL.Image, str_filename_or_label) | |
# We have processed_img in pil_images which are already PIL.Image objects after pipeline.preprocess_image | |
# We can use the current_image_name (or derived basenames) as the string part if needed by image_to_3d, | |
# but Trellis's run_multi_image takes a list of PIL images directly. | |
# Let's adapt multiimages for image_to_3d to be List[Tuple[Image.Image, str]] | |
multiimages_for_pipeline = [] | |
for idx, p_img in enumerate(pil_images): | |
# Create a simple label for each image for the tuple structure | |
label = image_basenames_for_prompt[idx] if idx < len(image_basenames_for_prompt) else f"image_{idx}" | |
multiimages_for_pipeline.append((p_img, label)) # p_img here is already the *processed* image tensor. | |
# image_to_3d will take image[0] from this list. | |
# This might need adjustment if image_to_3d expects raw PIL Images. | |
# Re-checking Trellis: pipeline.run_multi_image takes List[Image.Image] | |
# and preprocesses them internally if preprocess_image=True (default). | |
# Since we pre-process above, we should pass preprocess_image=False if run_multi_image allows. | |
# The `image_to_3d` in this file is a wrapper for run_multi_image. | |
# It passes `preprocess_image=False`. | |
# So, `pil_images` containing already processed images is what `image_to_3d` expects for `[image[0] for image in multiimages]` | |
state, _ = image_to_3d( | |
multiimages=[(img, name) for img, name in zip(pil_images, image_basenames_for_prompt)], # Pass list of (processed_PIL_image, name_str) | |
seed=seed_val, | |
ss_guidance_strength=ss_guidance_strength_val, | |
ss_sampling_steps=ss_sampling_steps_val, | |
slat_guidance_strength=slat_guidance_strength_val, | |
slat_sampling_steps=slat_sampling_steps_val, | |
multiimage_algo=multiimage_algo_val, | |
req=req | |
) | |
if state is None: | |
print("Error: Internal image_to_3d returned None state!") | |
raise ValueError("Internal image_to_3d failed to return state") | |
print(f"Python INFO: Internal image_to_3d completed. State type: {type(state)}") | |
print("Python INFO: Calling internal extract_glb...") | |
glb_path, _ = extract_glb( | |
state, mesh_simplify_val, texture_size_val, req | |
) | |
if glb_path is None or not os.path.isfile(glb_path): | |
print(f"Error: Internal extract_glb returned None or invalid path: {glb_path}") | |
raise FileNotFoundError(f"Generated GLB file not found at {glb_path}") | |
print(f"Python INFO: Internal extract_glb completed. GLB path: {glb_path}") | |
print(f"Python INFO: Uploading GLB from {glb_path} to {NODE_SERVER_UPLOAD_URL}") | |
persistent_url = None | |
with open(glb_path, "rb") as f: | |
files = {"modelFile": (os.path.basename(glb_path), f, "model/gltf-binary")} | |
payload = { | |
"clientType": "imagen", | |
"modelStage": "imagen_mesh", | |
"prompt": effective_model_description # Use the description here | |
} | |
print(f"Python INFO: Upload payload: {payload}") | |
response = requests.post(NODE_SERVER_UPLOAD_URL, files=files, data=payload) | |
response.raise_for_status() # Raise an exception for bad status codes | |
result = response.json() | |
persistent_url = result.get("persistentUrl") | |
if not persistent_url: | |
print(f"Error: No persistent URL in Node.js server response: {result}") | |
raise ValueError("Upload successful, but no persistent URL returned") | |
print(f"Python INFO: Successfully uploaded to Node server. Persistent URL: {persistent_url}") | |
return persistent_url | |
except Exception as e: | |
print(f"ERROR in Image-to-3D pipeline: {e}") | |
import traceback | |
traceback.print_exc() | |
raise gr.Error(f"Image-to-3D pipeline failed: {e}") | |
# Interfaz Gradio | |
with gr.Blocks(delete_cache=(600, 600)) as demo: | |
gr.Markdown(""" | |
# UTPL - Conversi贸n de Multiples Im谩genes a objetos 3D usando IA | |
### Tesis: *"Objetos tridimensionales creados por IA: Innovaci贸n en entornos virtuales"* | |
**Autor:** Carlos Vargas | |
**Base t茅cnica:** Adaptaci贸n de [TRELLIS](https://trellis3d.github.io/) (herramienta de c贸digo abierto para generaci贸n 3D) | |
**Prop贸sito educativo:** Demostraciones acad茅micas e Investigaci贸n en modelado 3D autom谩tico | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tabs() as input_tabs: | |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab: | |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3) | |
with gr.Accordion(label="Generation Settings", open=False): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Markdown("Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
gr.Markdown("Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic") | |
generate_btn = gr.Button("Generate") | |
with gr.Accordion(label="GLB Extraction Settings", open=False): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
with gr.Column(): | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
model_output = gr.Model3D(label="Extracted GLB", height=300) | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
output_buf = gr.State() | |
# Manejadores | |
demo.load(start_session) | |
demo.unload(end_session) | |
multiimage_prompt.upload( | |
preprocess_images, | |
inputs=[multiimage_prompt], | |
outputs=[multiimage_prompt], | |
) | |
generate_btn.click( | |
get_seed, | |
inputs=[randomize_seed, seed], | |
outputs=[seed], | |
).then( | |
image_to_3d, | |
inputs=[multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo], | |
outputs=[output_buf, video_output], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[extract_glb_btn], | |
) | |
video_output.clear( | |
lambda: gr.Button(interactive=False), | |
outputs=[extract_glb_btn], | |
) | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_glb], | |
) | |
model_output.clear( | |
lambda: gr.Button(interactive=False), | |
outputs=[download_glb], | |
) | |
# --- Add this section to explicitly register the API function for image to 3D --- | |
# Use gr.JSON for the API input, as it's designed for arbitrary JSON data. | |
api_image_inputs_json = gr.JSON(value=[]) # <--- CHANGED to gr.JSON and new variable name | |
api_input_type_state = gr.State(value="url") | |
api_model_description_state = gr.State(value="ImagenModel") | |
with gr.Row(visible=False): # Hide this row in the UI | |
api_image_gen_trigger_btn = gr.Button("API Image-to-3D Trigger") | |
api_image_gen_output_url = gr.Textbox(label="Generated Model URL (API)", visible=False) | |
api_image_gen_trigger_btn.click( | |
generate_model_from_images_and_upload, | |
inputs=[ | |
api_image_inputs_json, # <--- CHANGED to use the gr.JSON component's variable name | |
api_input_type_state, | |
seed, | |
ss_guidance_strength, | |
ss_sampling_steps, | |
slat_guidance_strength, | |
slat_sampling_steps, | |
multiimage_algo, | |
mesh_simplify, | |
texture_size, | |
api_model_description_state, | |
], | |
outputs=[api_image_gen_output_url], | |
api_name="generate_model_from_images_and_upload" | |
) | |
# --- End API registration section --- | |
# Lanzar la aplicaci贸n Gradio | |
if __name__ == "__main__": | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS") | |
pipeline.cuda() | |
try: | |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Precargar rembg | |
except: | |
pass | |
demo.launch(show_error=True) |