Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
asr = pipeline(task="automatic-speech-recognition", model="openai/whisper-base")
|
3 |
+
|
4 |
+
def get_text_from_audio(audio):
|
5 |
+
output = asr(audio, max_new_tokens=256,chunk_length_s=30,batch_size=8)
|
6 |
+
return output['text']
|
7 |
+
|
8 |
+
|
9 |
+
from transformers import MarianMTModel, MarianTokenizer
|
10 |
+
|
11 |
+
# Загрузка модели и токенизатора для перевода с русского на английский
|
12 |
+
tr_ru_model_name = "Helsinki-NLP/opus-mt-ru-en"
|
13 |
+
tr_ru_tokenizer = MarianTokenizer.from_pretrained(tr_ru_model_name)
|
14 |
+
tr_ru_model = MarianMTModel.from_pretrained(tr_ru_model_name)
|
15 |
+
|
16 |
+
# Функция для перевода текста
|
17 |
+
def translate_ru_to_en(text):
|
18 |
+
# Токенизация входного текста
|
19 |
+
tokenized_text = tr_ru_tokenizer.prepare_seq2seq_batch([text], return_tensors="pt")
|
20 |
+
|
21 |
+
# Перевод текста
|
22 |
+
translated = tr_ru_model.generate(**tokenized_text)
|
23 |
+
|
24 |
+
# Декодирование переведенного текста
|
25 |
+
translated_text = tr_ru_tokenizer.decode(translated[0], skip_special_tokens=True)
|
26 |
+
|
27 |
+
return translated_text
|
28 |
+
|
29 |
+
|
30 |
+
import requests
|
31 |
+
from PIL import Image
|
32 |
+
|
33 |
+
сurrent_images = []
|
34 |
+
|
35 |
+
def load_image(image_url):
|
36 |
+
image = Image.open(requests.get(image_url, stream=True).raw)
|
37 |
+
if сurrent_images:
|
38 |
+
сurrent_images.pop(0)
|
39 |
+
сurrent_images.append(image)
|
40 |
+
return image
|
41 |
+
|
42 |
+
|
43 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering
|
44 |
+
|
45 |
+
# Загрузка процессора и модели VQA
|
46 |
+
img_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
47 |
+
img_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
48 |
+
|
49 |
+
# Функция для получения ответа на вопрос по изображению
|
50 |
+
def ask_question_about_image(question):
|
51 |
+
# Подготовка входных данных для модели
|
52 |
+
encoding = img_processor(сurrent_images[0], text=question, return_tensors="pt")
|
53 |
+
|
54 |
+
# Получение ответа от модели
|
55 |
+
outputs = img_model(**encoding)
|
56 |
+
logits = outputs.logits
|
57 |
+
idx = logits.argmax(-1).item()
|
58 |
+
|
59 |
+
# Декодирование ответа
|
60 |
+
answer = img_model.config.id2label[idx]
|
61 |
+
|
62 |
+
return answer
|
63 |
+
|
64 |
+
|
65 |
+
from transformers import MarianMTModel, MarianTokenizer
|
66 |
+
|
67 |
+
# Загрузка модели и токенизатора для перевода с русского на английский
|
68 |
+
tr_en_model_name = "Helsinki-NLP/opus-mt-en-ru"
|
69 |
+
tr_en_tokenizer = MarianTokenizer.from_pretrained(tr_en_model_name)
|
70 |
+
tr_en_model = MarianMTModel.from_pretrained(tr_en_model_name)
|
71 |
+
|
72 |
+
# Функция для перевода текста
|
73 |
+
def translate_en_to_ru(text):
|
74 |
+
# Токенизация входного текста
|
75 |
+
tokenized_text = tr_en_tokenizer.prepare_seq2seq_batch([text], return_tensors="pt")
|
76 |
+
|
77 |
+
# Перевод текста
|
78 |
+
translated = tr_en_model.generate(**tokenized_text)
|
79 |
+
|
80 |
+
# Декодирование переведенного текста
|
81 |
+
translated_text = tr_en_tokenizer.decode(translated[0], skip_special_tokens=True)
|
82 |
+
|
83 |
+
return translated_text
|
84 |
+
|
85 |
+
|
86 |
+
from transformers import pipeline
|
87 |
+
import torch
|
88 |
+
import IPython.display as ipd
|
89 |
+
import io
|
90 |
+
import soundfile as sf
|
91 |
+
import numpy as np
|
92 |
+
|
93 |
+
# Загружаем TTS-модель для русского языка
|
94 |
+
tts_pipe = pipeline("text-to-speech", model="facebook/mms-tts-rus")
|
95 |
+
|
96 |
+
def text_to_speech(text, output_file="output.wav"):
|
97 |
+
output = tts_pipe(text)
|
98 |
+
print(output)
|
99 |
+
sf.write(output_file, output['audio'][0], samplerate=output['sampling_rate'])
|
100 |
+
|
101 |
+
return output_file
|
102 |
+
|
103 |
+
|
104 |
+
def transcribe_long_form(filepath):
|
105 |
+
if filepath is None:
|
106 |
+
gr.Warning("No audio found, please retry.")
|
107 |
+
return ""
|
108 |
+
|
109 |
+
gradio_audio.append(filepath)
|
110 |
+
ru_text = get_text_from_audio(gradio_audio[0])
|
111 |
+
eng_text = translate_ru_to_en(ru_text)
|
112 |
+
answer = ask_question_about_image(eng_text)
|
113 |
+
ru_text_ans = translate_en_to_ru(answer)
|
114 |
+
speech_filename = text_to_speech(ru_text_ans)
|
115 |
+
return speech_filename
|
116 |
+
|
117 |
+
|
118 |
+
import os
|
119 |
+
import gradio as gr
|
120 |
+
|
121 |
+
import gradio as gr
|
122 |
+
demo = gr.Blocks()
|
123 |
+
|
124 |
+
mic_transcribe = gr.Interface(
|
125 |
+
fn=transcribe_long_form,
|
126 |
+
inputs=gr.Audio(sources="microphone",
|
127 |
+
type="filepath"),
|
128 |
+
outputs="audio",
|
129 |
+
allow_flagging="never")
|
130 |
+
|
131 |
+
file_load = gr.Interface(
|
132 |
+
fn=load_image,
|
133 |
+
inputs="text",
|
134 |
+
outputs="image",
|
135 |
+
allow_flagging="never",
|
136 |
+
)
|
137 |
+
|
138 |
+
with demo:
|
139 |
+
gr.TabbedInterface(
|
140 |
+
[mic_transcribe,
|
141 |
+
file_load],
|
142 |
+
["Transcribe Microphone",
|
143 |
+
"Transcribe Audio File"],
|
144 |
+
)
|
145 |
+
demo.launch(share=True)
|