Spaces:
Runtime error
Runtime error
File size: 20,370 Bytes
0c8d55e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import os
import copy
import math
from typing import Any, Dict, Iterable, List, Optional, Union
from safetensors.torch import save_file
from diffusers.utils import (
deprecate,
is_torchvision_available,
is_transformers_available,
)
if is_transformers_available():
import transformers
if is_torchvision_available():
from torchvision import transforms
import numpy as np
import torch
import deepspeed
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
def _z3_params_to_fetch(param_list):
return [p for p in param_list if hasattr(p, "ds_id") and p.ds_status == ZeroParamStatus.NOT_AVAILABLE]
# Adapted from diffusers-style ema https://github.com/huggingface/diffusers/blob/main/src/diffusers/training_utils.py#L263
class EMAModel:
"""
Exponential Moving Average of models weights
"""
def __init__(
self,
model: torch.nn.Module,
decay: float = 0.9999,
min_decay: float = 0.0,
update_after_step: int = 0,
use_ema_warmup: bool = False,
inv_gamma: Union[float, int] = 1.0,
power: Union[float, int] = 2 / 3,
model_cls: Optional[Any] = None,
model_config: Dict[str, Any] = None,
**kwargs,
):
"""
Args:
parameters (Iterable[torch.nn.Parameter]): The parameters to track.
decay (float): The decay factor for the exponential moving average.
min_decay (float): The minimum decay factor for the exponential moving average.
update_after_step (int): The number of steps to wait before starting to update the EMA weights.
use_ema_warmup (bool): Whether to use EMA warmup.
inv_gamma (float):
Inverse multiplicative factor of EMA warmup. Default: 1. Only used if `use_ema_warmup` is True.
power (float): Exponential factor of EMA warmup. Default: 2/3. Only used if `use_ema_warmup` is True.
device (Optional[Union[str, torch.device]]): The device to store the EMA weights on. If None, the EMA
weights will be stored on CPU.
@crowsonkb's notes on EMA Warmup:
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan
to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps),
gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999
at 215.4k steps).
"""
self.model = model
if kwargs.get("max_value", None) is not None:
deprecation_message = "The `max_value` argument is deprecated. Please use `decay` instead."
deprecate("max_value", "1.0.0", deprecation_message, standard_warn=False)
decay = kwargs["max_value"]
if kwargs.get("min_value", None) is not None:
deprecation_message = "The `min_value` argument is deprecated. Please use `min_decay` instead."
deprecate("min_value", "1.0.0", deprecation_message, standard_warn=False)
min_decay = kwargs["min_value"]
if kwargs.get("device", None) is not None:
deprecation_message = "The `device` argument is deprecated. Please use `to` instead."
deprecate("device", "1.0.0", deprecation_message, standard_warn=False)
self.to(device=kwargs["device"])
self.temp_stored_params = None
self.decay = decay
self.min_decay = min_decay
self.update_after_step = update_after_step
self.use_ema_warmup = use_ema_warmup
self.inv_gamma = inv_gamma
self.power = power
self.optimization_step = 0
self.cur_decay_value = None # set in `step()`
self.model_cls = model_cls
self.model_config = model_config
@classmethod
def extract_ema_kwargs(cls, kwargs):
"""
Extracts the EMA kwargs from the kwargs of a class method.
"""
ema_kwargs = {}
for key in [
"decay",
"min_decay",
"optimization_step",
"update_after_step",
"use_ema_warmup",
"inv_gamma",
"power",
]:
if kwargs.get(key, None) is not None:
ema_kwargs[key] = kwargs.pop(key)
return ema_kwargs
@classmethod
def from_pretrained(cls, path, model_cls) -> "EMAModel":
config = model_cls.load_config(path)
ema_kwargs = cls.extract_ema_kwargs(config)
model = model_cls.from_pretrained(path)
ema_model = cls(model, model_cls=model_cls, model_config=config)
ema_model.load_state_dict(ema_kwargs)
return ema_model
def save_pretrained(self, path):
if self.model_cls is None:
raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__.")
if self.model_config is None:
raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__.")
rank = int(os.getenv("RANK", "0"))
state_dict = self.state_dict()
state_dict.pop("model")
model_to_save = self.model.module if hasattr(self.model, "module") else self.model
model_state_dict = {}
for k, v in model_to_save.named_parameters():
# only gather z3 params
params_to_fetch = _z3_params_to_fetch([v])
with deepspeed.zero.GatheredParameters(params_to_fetch, enabled=len(params_to_fetch) > 0):
vv = v.data.cpu()
if rank == 0:
model_state_dict[k] = vv
if rank == 0:
os.makedirs(path, exist_ok=True)
print(f'state_dict, {state_dict.keys()}')
import time
t_start = time.perf_counter()
print(f"[{t_start:.4f}] 开始 save_pretrained")
print(type(self.model_config), self.model_config)
for k, v in state_dict.items():
setattr(self.model_config, k, v)
# self.model.config[k] = v
t1 = time.perf_counter()
print(f"[{t1:.4f}] after setattr config (耗时 {t1-t_start:.4f} 秒)")
self.model_config.save_pretrained(path)
# with open(os.path.join(path, "config.json"), "w") as f:
# json.dump(self.model.config, f, indent=2)
if hasattr(self.model, "generation_config"):
print(type(self.model.generation_config), self.model.generation_config)
self.model.generation_config.save_pretrained(path)
# with open(os.path.join(path, "generation_config.json"), "w") as f:
# json.dump(self.model.generation_config, f, indent=2)
t2 = time.perf_counter()
print(f"[{t2:.4f}] self.model.save_config(path) (耗时 {t2-t1:.4f} 秒)")
torch.save(model_state_dict, os.path.join(path, "pytorch_model.bin"))
t3 = time.perf_counter()
print(f"[{t3:.4f}] after save_pretrained (耗时 {t3-t2:.4f} 秒)")
print(f"[{t3:.4f}] 总耗时 {t3-t_start:.4f} 秒")
return model_state_dict
def get_decay(self, optimization_step: int) -> float:
"""
Compute the decay factor for the exponential moving average.
"""
step = max(0, optimization_step - self.update_after_step - 1)
if step <= 0:
return 0.0
if self.use_ema_warmup:
cur_decay_value = 1 - (1 + step / self.inv_gamma) ** -self.power
else:
cur_decay_value = (1 + step) / (10 + step)
cur_decay_value = min(cur_decay_value, self.decay)
# make sure decay is not smaller than min_decay
cur_decay_value = max(cur_decay_value, self.min_decay)
return cur_decay_value
@torch.no_grad()
def step(self, parameters: Iterable[torch.nn.Parameter]):
if isinstance(parameters, torch.nn.Module):
deprecation_message = (
"Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. "
"Please pass the parameters of the module instead."
)
deprecate(
"passing a `torch.nn.Module` to `ExponentialMovingAverage.step`",
"1.0.0",
deprecation_message,
standard_warn=False,
)
parameters = parameters.parameters()
parameters = list(parameters)
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
decay = self.get_decay(self.optimization_step)
self.cur_decay_value = decay
one_minus_decay = 1 - decay
# print(f'one_minus_decay {one_minus_decay}')
# https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/runtime/zero/partition_parameters.py#L1543
for s_param, param in zip(self.model.parameters(), parameters):
s_tensor, tensor = None, None
if hasattr(s_param, "ds_tensor"): # EMA ZeRO-3
# print('EMA ZeRO-3')
s_tensor = s_param.ds_tensor
if hasattr(param, "ds_tensor"): # DiT ZeRO-3
tensor = param.ds_tensor
else: # DiT ZeRO-2
rank, world_size = int(os.getenv("RANK")), int(os.getenv("WORLD_SIZE"))
partition_size = math.ceil(param.numel()/world_size)
start = partition_size * rank
end = start + partition_size
one_dim_param = param.data.contiguous().view(-1)
if start < param.numel() and end <= param.numel():
tensor = one_dim_param.narrow(0, start, partition_size)
elif start < param.numel():
# raise ValueError(f'start {start}, end {end}, param.numel() {param.numel()}, partition_size {partition_size}')
elems_to_copy = param.numel() - start
s_tensor = s_param.ds_tensor.narrow(0, 0, elems_to_copy)
tensor = one_dim_param.narrow(0, start, elems_to_copy)
else:
# raise ValueError(f'start {start}, end {end}, param.numel() {param.numel()}, partition_size {partition_size}')
continue
else: # DiT/EMA ZeRO-2
s_tensor = s_param.data
tensor = param.data
assert s_tensor.shape == tensor.shape, f"mismatch shape, s_tensor: {s_tensor.shape}, tensor: {tensor.shape}"
if param.requires_grad:
s_tensor.sub_(one_minus_decay * (s_tensor - tensor.to(s_tensor.dtype)))
else:
s_tensor.copy_(tensor)
def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
"""
Copy current averaged parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages. If `None`, the parameters with which this
`ExponentialMovingAverage` was initialized will be used.
"""
parameters = list(parameters)
for s_param, param in zip(self.model.parameters(), parameters):
param.data.copy_(s_param.to(param.device).data)
def to(self, device=None, dtype=None) -> None:
r"""Move internal buffers of the ExponentialMovingAverage to `device`.
Args:
device: like `device` argument to `torch.Tensor.to`
"""
# .to() on the tensors handles None correctly
self.model = self.model.to(device=device, dtype=dtype)
def state_dict(self) -> dict:
r"""
Returns the state of the ExponentialMovingAverage as a dict. This method is used by accelerate during
checkpointing to save the ema state dict.
"""
# Following PyTorch conventions, references to tensors are returned:
# "returns a reference to the state and not its copy!" -
# https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"model": self.model.state_dict(),
}
def store(self, parameters: Iterable[torch.nn.Parameter]) -> None:
r"""
Args:
Save the current parameters for restoring later.
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
temporarily stored.
"""
self.temp_stored_params = [param.detach().cpu().clone() for param in parameters]
def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None:
r"""
Args:
Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without:
affecting the original optimization process. Store the parameters before the `copy_to()` method. After
validation (or model saving), use this to restore the former parameters.
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters. If `None`, the parameters with which this
`ExponentialMovingAverage` was initialized will be used.
"""
if self.temp_stored_params is None:
raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`")
for c_param, param in zip(self.temp_stored_params, parameters):
param.data.copy_(c_param.data)
# Better memory-wise.
self.temp_stored_params = None
def load_state_dict(self, state_dict: dict) -> None:
r"""
Args:
Loads the ExponentialMovingAverage state. This method is used by accelerate during checkpointing to save the
ema state dict.
state_dict (dict): EMA state. Should be an object returned
from a call to :meth:`state_dict`.
"""
# deepcopy, to be consistent with module API
state_dict = copy.deepcopy(state_dict)
self.decay = state_dict.get("decay", self.decay)
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError("Decay must be between 0 and 1")
self.min_decay = state_dict.get("min_decay", self.min_decay)
if not isinstance(self.min_decay, float):
raise ValueError("Invalid min_decay")
self.optimization_step = state_dict.get("optimization_step", self.optimization_step)
if not isinstance(self.optimization_step, int):
raise ValueError("Invalid optimization_step")
self.update_after_step = state_dict.get("update_after_step", self.update_after_step)
if not isinstance(self.update_after_step, int):
raise ValueError("Invalid update_after_step")
self.use_ema_warmup = state_dict.get("use_ema_warmup", self.use_ema_warmup)
if not isinstance(self.use_ema_warmup, bool):
raise ValueError("Invalid use_ema_warmup")
self.inv_gamma = state_dict.get("inv_gamma", self.inv_gamma)
if not isinstance(self.inv_gamma, (float, int)):
raise ValueError("Invalid inv_gamma")
self.power = state_dict.get("power", self.power)
if not isinstance(self.power, (float, int)):
raise ValueError("Invalid power")
model_state_dict = state_dict.get("model", None)
if model_state_dict is not None:
self.model.load_state_dict(model_state_dict)
if __name__ == "__main__":
import sys
sys.path.append('../..')
from univa.models.qwen2p5vl.modeling_univa_qwen2p5vl import UnivaQwen2p5VLForConditionalGeneration
import ipdb
import json
import deepspeed
from transformers.integrations import HfDeepSpeedConfig
from accelerate import Accelerator, DistributedDataParallelKwargs, DistributedType
from accelerate import init_empty_weights
deepspeed.init_distributed()
GB = 1024 * 1024 * 1024
def create_ema_model(
accelerator,
model_cls,
model_config,
ema_model_state_dict,
ds_config=None,
):
# model_config = AutoConfig.from_pretrained(model_name_or_path)
ds_config["train_micro_batch_size_per_gpu"] = 1
ds_config["fp16"]["enabled"] = False
ds_config["bf16"]["enabled"] = False
ds_config["gradient_accumulation_steps"] = 1
ds_config["train_batch_size"] = 1 * accelerator.num_processes
# Note: dschf is defined in function scope to avoid global effects
# https://huggingface.co/docs/transformers/main_classes/deepspeed#nontrainer-deepspeed-integration
accelerator.print(f'EMA deepspeed config {ds_config}')
if ds_config is not None and ds_config["zero_optimization"]["stage"] == 3:
dschf = HfDeepSpeedConfig(ds_config)
else:
dschf = None
# we load weights from original model instead of deepcopy
# model = model_cls.from_config(model_config)
# model.eval().requires_grad_(False)
# print('init model', model)
# print('model.device', model.device)
# accelerator.print(f"model_cls.from_config(model_config) finish, memory_allocated: {torch.cuda.memory_allocated()/GB:.2f} GB")
# for k, v in model.state_dict().items():
# print(k, v.shape)
# model.load_state_dict(ema_model_state_dict, strict=True)
model = UnivaQwen2p5VLForConditionalGeneration.from_pretrained(
pretrained_lvlm_name_or_path,
# config=lvlm_model.config,
# deepspeed=dschf.to_dict(), # 关键参数
torch_dtype=torch.float32, # fp32
)
# print('load_state_dict')
# print('after model.device', model.device)
accelerator.print(f"load_state_dict finish, memory_allocated: {torch.cuda.memory_allocated()/GB:.2f} GB")
ema_model = EMAModel(
model, decay=0.99,
model_cls=model_cls, model_config=model_config
)
accelerator.print(f"EMAModel finish, memory_allocated: {torch.cuda.memory_allocated()/GB:.2f} GB")
accelerator.print(f'Successully deepcopy EMAModel from model')
ema_model.model, _, _, _ = deepspeed.initialize(model=ema_model.model, config_params=ds_config)
accelerator.print(f"deepspeed.initialize finish, memory_allocated: {torch.cuda.memory_allocated()/GB:.2f} GB")
return ema_model
ema_deepspeed_config_file = "/mnt/data/lb/Remake/UniWorld/scripts/accelerate_configs/zero3.json"
pretrained_lvlm_name_or_path = "/mnt/data/checkpoints/UniVA/UniVA-Qwen2.5-VL-7B-Instruct-FLUX.1-dev-fp32"
accelerator = Accelerator()
lvlm_model = UnivaQwen2p5VLForConditionalGeneration.from_pretrained(
# pretrained_lvlm_name_or_path,
'ema_model',
)
print('after load', lvlm_model.dtype)
lvlm_model.to(device=accelerator.device, dtype=torch.bfloat16)
accelerator.print(f"Load model finish, memory_allocated: {torch.cuda.memory_allocated()/GB:.2f} GB")
# ema_model_state_dict = lvlm_model.state_dict()
# with open(ema_deepspeed_config_file, 'r') as f:
# ds_config = json.load(f)
# ema_model = create_ema_model(
# accelerator, model_cls=UnivaQwen2p5VLForConditionalGeneration, model_config=lvlm_model.config,
# ema_model_state_dict=ema_model_state_dict, ds_config=ds_config
# )
# accelerator.print(f"Load ema model finish, memory_allocated: {torch.cuda.memory_allocated()/GB:.2f} GB")
# # import ipdb;ipdb.set_trace()
# # if accelerator.process_index == 0:
# ema_model.save_pretrained('ema_model')
# print(ema_model)
'''
accelerate launch --num_processes 8 --num_machines 1 create_ema.py
CUDA_VISIBLE_DEVICES=7 accelerate launch --num_processes 1 --num_machines 1 univa/utils/create_ema.py
''' |