File size: 28,392 Bytes
0c8d55e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
import gradio as gr
import sys
sys.path.append("..")
from transformers import AutoProcessor, SiglipImageProcessor, SiglipVisionModel, T5EncoderModel, BitsAndBytesConfig
from univa.models.qwen2p5vl.modeling_univa_qwen2p5vl import UnivaQwen2p5VLForConditionalGeneration
from univa.utils.flux_pipeline import FluxPipeline
from univa.utils.get_ocr import get_ocr_result
from univa.utils.denoiser_prompt_embedding_flux import encode_prompt
from qwen_vl_utils import process_vision_info
from univa.utils.anyres_util import dynamic_resize, concat_images_adaptive
import torch
from torch import nn
import os
import uuid
import base64
from typing import Dict
from PIL import Image, ImageDraw, ImageFont

import argparse

def parse_args():
    parser = argparse.ArgumentParser(description="Model and component paths")

    parser.add_argument("--model_path", type=str, default="LanguageBind/UniWorld-V1", help="UniWorld-V1模型路径")
    parser.add_argument("--flux_path", type=str, default="black-forest-labs/FLUX.1-dev", help="FLUX.1-dev模型路径")
    parser.add_argument("--siglip_path", type=str, default="google/siglip2-so400m-patch16-512", help="siglip2模型路径")
    parser.add_argument("--server_name", type=str, default="127.0.0.1", help="IP地址")
    parser.add_argument("--server_port", type=int, default=6812, help="端口号")
    parser.add_argument("--share", action="store_true", help="是否公开分享")
    parser.add_argument("--nf4", action="store_true", help="是否NF4量化")

    return parser.parse_args()


def add_plain_text_watermark(
    img: Image.Image,
    text: str,
    margin: int = 50, 
    font_size: int = 30, 
):
    if img.mode != "RGB":
        img = img.convert("RGB")

    draw = ImageDraw.Draw(img)
    font = ImageFont.truetype("DejaVuSans.ttf", font_size)
    bbox = draw.textbbox((0, 0), text)
    text_width = bbox[2] - bbox[0]
    text_height = bbox[3] - bbox[1]

    x = img.width - text_width - int(3.3 * margin)
    y = img.height - text_height - margin

    draw.text((x, y), text, font=font, fill=(255, 255, 255))
    return img


css = """
.table-wrap table tr td:nth-child(3) > div {
    max-height: 150px;       /* 最多 100px 高度,按需修改 */
    overflow-y: auto;        /* 超出部分显示竖向滚动条 */
    white-space: pre-wrap;   /* 自动换行 */
    word-break: break-all;   /* 长单词内部分行 */
}

.table-wrap table tr td:nth-child(2) > div {
    max-width: 150px;
    white-space: pre-wrap;
    word-break: break-all;
    overflow-x: auto;
}
.table-wrap table tr th:nth-child(2) {
    max-width: 150px;
    white-space: normal;
    word-break: keep-all;
    overflow-x: auto;
}

.table-wrap table tr td:nth-last-child(-n+8) > div {
    max-width: 130px;
    white-space: pre-wrap;
    word-break: break-all;
    overflow-x: auto;
}
.table-wrap table tr th:nth-last-child(-n+8) {
    max-width: 130px;
    white-space: normal;
    word-break: keep-all;
    overflow-x: auto;
}
"""


def img2b64(image_path):
    with open(image_path, "rb") as f:
        b64 = base64.b64encode(f.read()).decode()
    data_uri = f"data:image/jpeg;base64,{b64}"
    return data_uri


def initialize_models(args):
    os.makedirs("tmp", exist_ok=True)
    # Paths
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_quant_type="nf4",
    )
    
    # Load main model and task head
    model = UnivaQwen2p5VLForConditionalGeneration.from_pretrained(
        args.model_path,
        torch_dtype=torch.bfloat16,
        attn_implementation="flash_attention_2",
        quantization_config=quantization_config if args.nf4 else None,
    ).to(device)
    task_head = nn.Sequential(
        nn.Linear(3584, 10240),
        nn.SiLU(),
        nn.Dropout(0.3),
        nn.Linear(10240, 2)
    ).to(device)
    task_head.load_state_dict(torch.load(os.path.join(args.model_path, 'task_head_final.pt')))
    task_head.eval()

    processor = AutoProcessor.from_pretrained(
        args.model_path,
        min_pixels=448*448,
        max_pixels=448*448,
    )
    if args.nf4:
        text_encoder_2 = T5EncoderModel.from_pretrained(
            args.flux_path,
            subfolder="text_encoder_2",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
        )
        pipe = FluxPipeline.from_pretrained(
            args.flux_path,
            transformer=model.denoise_tower.denoiser,
            text_encoder_2=text_encoder_2,
            torch_dtype=torch.bfloat16,
        ).to(device)
    else:
        pipe = FluxPipeline.from_pretrained(
            args.flux_path,
            transformer=model.denoise_tower.denoiser,
            torch_dtype=torch.bfloat16,
        ).to(device)
    tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
    text_encoders = [pipe.text_encoder, pipe.text_encoder_2]

    # Optional SigLIP
    siglip_processor, siglip_model = None, None
    siglip_processor = SiglipImageProcessor.from_pretrained(args.siglip_path)
    siglip_model = SiglipVisionModel.from_pretrained(
        args.siglip_path,
        torch_dtype=torch.bfloat16,
    ).to(device)

    return {
        'model': model,
        'task_head': task_head,
        'processor': processor,
        'pipe': pipe,
        'tokenizers': tokenizers,
        'text_encoders': text_encoders,
        'siglip_processor': siglip_processor,
        'siglip_model': siglip_model,
        'device': device,
    }


args = parse_args()
state = initialize_models(args)


def process_large_image(raw_img):
    if raw_img is None:
        return raw_img
    img = Image.open(raw_img).convert("RGB")

    max_side = max(img.width, img.height)
    if max_side > 1024:
        scale = 1024 / max_side
        new_w = int(img.width * scale)
        new_h = int(img.height * scale)
        print(f'resize img {img.size} to {(new_w, new_h)}')
        img = img.resize((new_w, new_h), resample=Image.LANCZOS)
        save_path = f"tmp/{uuid.uuid4().hex}.png"
        img.save(save_path)
        return save_path
    else:
        return raw_img


def chat_step(image1, image2, text, height, width, steps, guidance,
              ocr_enhancer, joint_with_t5, enhance_generation, enhance_understanding,
              seed, num_imgs, history_state, progress=gr.Progress()):
    
    try:
        convo = history_state['conversation']
        image_paths = history_state['history_image_paths']
        cur_ocr_i = history_state['cur_ocr_i']
        cur_genimg_i = history_state['cur_genimg_i']

        # image1 = process_large_image(image1)
        # image2 = process_large_image(image2)
        # Build content
        content = []
        if text:
            ocr_text = ''
            if ocr_enhancer and content:
                ocr_texts = []
                for img in (image1, image2):
                    if img:
                        ocr_texts.append(get_ocr_result(img, cur_ocr_i))
                        cur_ocr_i += 1
                ocr_text = '\n'.join(ocr_texts)
            content.append({'type':'text','text': text + ocr_text})
        for img in (image1, image2):
            if img:
                content.append({'type':'image','image':img,'min_pixels':448*448,'max_pixels':448*448})
                image_paths.append(img)

        convo.append({'role':'user','content':content})

        # Prepare inputs
        chat_text = state['processor'].apply_chat_template(convo,
                        tokenize=False, add_generation_prompt=True)
        chat_text = '<|im_end|>\n'.join(chat_text.split('<|im_end|>\n')[1:])
        image_inputs, video_inputs = process_vision_info(convo)
        inputs = state['processor'](
            text=[chat_text], images=image_inputs, videos=video_inputs,
            padding=True, return_tensors='pt'
        ).to(state['device'])

        # Model forward & task head
        with torch.no_grad():
            outputs = state['model'](**inputs, return_dict=True, output_hidden_states=True)
        hidden = outputs.hidden_states[-1]
        mask = inputs.input_ids == 77091
        vecs = hidden[mask][-1:]
        task_res = state['task_head'](vecs.float())[0]
        print(task_res)
        # Branch decision
        if enhance_generation:
            do_image = True
        elif enhance_understanding:
            do_image = False
        else:
            do_image = (task_res[0] < task_res[1])

        seed = int(seed)
        if seed == -1:
            seed = torch.Generator(device="cpu").seed()
        torch.manual_seed(seed)
        # Generate
        if do_image:
            # image generation pipeline
            siglip_hs = None
            if state['siglip_processor'] and image_paths:
                vals = [state['siglip_processor'].preprocess(
                            images=Image.open(p).convert('RGB'), do_resize=True,
                            return_tensors='pt', do_convert_rgb=True
                        ).pixel_values.to(state['device'])
                        for p in image_paths]
                siglip_hs = state['siglip_model'](torch.concat(vals)).last_hidden_state

            with torch.no_grad():
                lvlm = state['model'](
                    inputs.input_ids, pixel_values=getattr(inputs,'pixel_values',None),
                    attention_mask=inputs.attention_mask,
                    image_grid_thw=getattr(inputs,'image_grid_thw',None),
                    siglip_hidden_states=siglip_hs,
                    output_type='denoise_embeds'
                )
                prm_embeds, pooled = encode_prompt(
                    state['text_encoders'], state['tokenizers'],
                    text if joint_with_t5 else '', 256, state['device'], 1
                )
            emb = torch.concat([lvlm, prm_embeds], dim=1) if joint_with_t5 else lvlm


            def diffusion_to_gradio_callback(_pipeline, step_idx: int, timestep: int, tensor_dict: Dict):
                # 1)更新 Gradio 进度条
                frac = (step_idx + 1) / float(steps)
                progress(frac)

                return tensor_dict

            with torch.no_grad():
                img = state['pipe'](
                    prompt_embeds=emb, pooled_prompt_embeds=pooled,
                    height=height, width=width,
                    num_inference_steps=steps,
                    guidance_scale=guidance,
                    generator=torch.Generator(device='cuda').manual_seed(seed), 
                    num_images_per_prompt=num_imgs, 
                    callback_on_step_end=diffusion_to_gradio_callback,
                    # callback_on_step_end_tensor_inputs=["latents", "prompt_embeds"],
                ).images
            # img = [add_plain_text_watermark(im, 'Open-Sora Plan 2.0 Generated') for im in img]
            img = concat_images_adaptive(img)
            save_path = f"tmp/{uuid.uuid4().hex}.png"
            img.save(save_path)
            convo.append({'role':'assistant','content':[{'type':'image','image':save_path}]})
            cur_genimg_i += 1
            progress(1.0)
            bot_msg = (None, save_path)
        else:
            # text generation
            gen_ids = state['model'].generate(**inputs, max_new_tokens=128)
            out = state['processor'].batch_decode(
                [g[len(inputs.input_ids[0]):] for g in gen_ids], skip_special_tokens=True
            )[0]
            convo.append({'role':'assistant','content':[{'type':'text','text':out}]})
            bot_msg = (None, out)

        
        chat_pairs = []
        # print(convo)
        # print()
        # print()
        for msg in convo:
            # print(msg)
            if msg['role']=='user':
                parts = []
                for c in msg['content']:
                    if c['type']=='text': parts.append(c['text'])
                    if c['type']=='image': parts.append(f"![user image]({img2b64(c['image'])})")
                chat_pairs.append(("\n".join(parts), None))
            else:
                parts = []
                for c in msg['content']:
                    if c['type']=='text': parts.append(c['text'])
                    if c['type']=='image': parts.append(f"![assistant image]({img2b64(c['image'])})")
                if msg['content'][-1]['type']=='text':
                    chat_pairs[-1] = (chat_pairs[-1][0], parts[-1])
                else:
                    chat_pairs[-1] = (chat_pairs[-1][0], parts[-1])
        # print()
        # print(chat_pairs)

        # Update state
        history_state.update({
            'conversation': convo,
            'history_image_paths': image_paths,
            'cur_ocr_i': cur_ocr_i,
            'cur_genimg_i': cur_genimg_i
        })
        return chat_pairs, history_state, seed
    except Exception as e:
        # 捕捉所有异常,返回错误提示,建议用户清理历史后重试
        error_msg = f"发生错误:{e}. 请点击 \"Clear History\" 清理对话历史后再试一次。"
        chat_pairs = [(None, error_msg)]
        # 不修改 history_state,让用户自行清理
        return chat_pairs, history_state, seed

def copy_seed_for_user(real_seed):
    # 这个函数会把隐藏的 seed_holder 值,传给真正要显示的 seed Textbox
    return real_seed

def clear_inputs():
    # img1 和 img2 用 None 来清空;text_in 用空字符串清空;seed 同理清空
    return None, None, "", ""

def clear_history():
    # 默认 prompt 和 seed
    default_prompt = "Translate this photo into a Studio Ghibli-style illustration, holding true to the original composition and movement."
    default_seed   = "-1"

    # 1. chatbot 要用 gr.update(value=[]) 清空
    # 2. state 直接给回初始 dict
    # 3. prompt 和 seed 同样用 gr.update()
    return (
        gr.update(value=[]),                             # 清空聊天框
        {'conversation':[],                              # 重置 state
         'history_image_paths':[],
         'cur_ocr_i':0,
         'cur_genimg_i':0},
        gr.update(value=None),                 # 重置 image1
        gr.update(value=None),                 # 重置 image2
        gr.update(value=default_prompt),                 # 重置 prompt 文本框
        gr.update(value=default_seed),                   # 重置 seed 文本框
    )


if __name__ == '__main__':
    # Gradio UI
    with gr.Blocks(
        theme=gr.themes.Soft(), 
        css=css
        ) as demo:

        gr.Markdown(
            """
            <div style="text-align:center;">

            # 🎉 UniWorld-V1 Chat Interface 🎉
            ### Unlock Cutting‑Edge Visual Perception, Feature Extraction, Editing, Synthesis, and Understanding

            **Usage Guide:**

            - It is recommended to perform inference on four images concurrently to offer varied selections.

            - Uploaded images are automatically resized; manually specifying resolutions that differ substantially from the original is not advised.
            </div>
            """,
            elem_classes="header-text",
        )
        with gr.Row():
            with gr.Column(1, min_width=0):
                gr.Markdown(
                    """
                    **🖼️ Visual Perception & Feature Extraction**  
                    - Canny Edge Detection  
                    - Mini-Line Segment Detection  
                    - Normal Map Generation
                    - Sketch Generation  
                    - Holistically-Nested Edge Detection  
                    - Depth Estimation  
                    - Human Pose Estimation
                    - Object Detection (Boxes)  
                    - Semantic Segmentation (Masks)
                    """
                )
            with gr.Column(1, min_width=0):
                gr.Markdown(
                    """
                    **✂️ Image Editing & Manipulation**  
                    - Add Elements  
                    - Adjust Attributes  
                    - Change Background  
                    - Remove Objects  
                    - Replace Regions  
                    - Perform Actions  
                    - Restyle  
                    - Compose Scenes
                    """
                )
            with gr.Column(1, min_width=0):
                gr.Markdown(
                    """
                    **🔄 Cross-Modal Synthesis & Transformation**  
                    - Text→Image Synthesis  
                    - Image‑to‑Image Translation  
                    - Multi‑Image Combination 
                    - Extract IP Features  
                    - IP Feature Composition
                    """ 
                )
            with gr.Column(1, min_width=0):
                gr.Markdown(
                    """
                    **🤖 Visual & Textual QA**  
                    - Image‑Text QA  
                    - Text‑Text QA
                    """
                )

        with gr.Row():
            with gr.Column():
                with gr.Row():
                    img1 = gr.Image(type='filepath', label="Image 1", height=256, width=256)
                    img2 = gr.Image(type='filepath', label="Image 2 (Optional reference)", height=256, width=256, visible=True)
                text_in = gr.Textbox(label="Instruction", value="Translate this photo into a Studio Ghibli-style illustration, holding true to the original composition and movement.")
                seed = gr.Textbox(label="Seed (-1 for random)", value="-1")
                seed_holder = gr.Textbox(visible=False)
                with gr.Row():
                    num_imgs = gr.Slider(1, 4, 4, step=1, label="Num Images")
                
                with gr.Row():
                    height = gr.Slider(256, 2048, 1024, step=64, label="Height")
                    width = gr.Slider(256, 2048, 1024, step=64, label="Width")
                with gr.Row():
                    steps = gr.Slider(8, 50, 30, step=1, label="Inference steps")
                    guidance = gr.Slider(1.0, 10.0, 4.0, step=0.1, label="Guidance scale")
                with gr.Accordion("Advanced Options", open=False, visible=True):
                    with gr.Row():
                        enhance_gen_box = gr.Checkbox(value=False, label="Enhance Generation")
                        enhance_und_box = gr.Checkbox(value=False, label="Enhance Understanding")
                    with gr.Row():
                        ocr_box = gr.Checkbox(value=False, label="Enhance Text Rendering")
                        t5_box = gr.Checkbox(value=False, label="Enhance Current Turn")
            with gr.Column():
                chatbot = gr.Chatbot(
                    max_height=100000, min_height=700, 
                    height=None, 
                    resizable=True, 
                    show_copy_button=True
                    )
        anchor_pixels = 1024*1024
        # Dynamic resize callback
        def update_size(i1, i2):
            shapes = []
            for p in (i1, i2):
                if p:
                    im = Image.open(p)
                    w, h = im.size
                    shapes.append((w, h))
            if not shapes:
                return gr.update(), gr.update()
            if len(shapes) == 1:
                w, h = shapes[0]
            else:
                w = sum(s[0] for s in shapes) / len(shapes)
                h = sum(s[1] for s in shapes) / len(shapes)
            new_h, new_w = dynamic_resize(int(h), int(w), 'any_11ratio', anchor_pixels=anchor_pixels)
            return gr.update(value=new_h), gr.update(value=new_w)
        img1.change(fn=update_size, inputs=[img1, img2], outputs=[height, width])
        img2.change(fn=update_size, inputs=[img1, img2], outputs=[height, width])

        # Mutual exclusivity
        enhance_gen_box.change(
            lambda g: gr.update(value=False) if g else gr.update(),
            inputs=[enhance_gen_box], outputs=[enhance_und_box]
        )
        enhance_und_box.change(
            lambda u: gr.update(value=False) if u else gr.update(),
            inputs=[enhance_und_box], outputs=[enhance_gen_box]
        )
        state_ = gr.State({'conversation':[], 'history_image_paths':[], 'cur_ocr_i':0, 'cur_genimg_i':0})
        with gr.Row():
            submit = gr.Button("Send", variant="primary")
            clear = gr.Button("Clear History", variant="primary")

        progress_bar = gr.Progress()
        click_event = submit.click(
            fn=chat_step,
            inputs=[img1, img2, text_in, height, width, steps, guidance,
                    ocr_box, t5_box, enhance_gen_box, enhance_und_box, seed, num_imgs, state_, 
                    ],
            outputs=[chatbot, state_, seed_holder], 
            scroll_to_output=True
        )
        click_event.then(
            fn=copy_seed_for_user,
            inputs=[seed_holder],    # 输入是隐藏的 seed_holder
            outputs=[seed]           # 输出到真正要显示的 seed Textbox
        )

        clear.click(
            fn=clear_history,
            inputs=[],
            outputs=[chatbot, state_, img1, img2, text_in, seed]
        )

        # ========== 添加 Validation Examples ==========
        example_height, example_width = 1024, 1024
        gr.Examples(
            examples_per_page=100, 
            examples=[
                # text-to-image
                [None, None,
                "Generate an adorable golden retriever puppy playing in a sunny park, "
                "with fluffy fur, big round eyes, and a happy expression. "
                "The background should have green grass, some flowers, and a blue sky with white clouds.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],


                # NIKE color swap
                ["assets/nike_src.jpg", None,
                "Switch the product's color from black, black to white, white, making sure the transition is crisp and clear.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                # style transfer (Ghibli)
                ["assets/gradio/origin.png", None,
                "Translate this photo into a Studio Ghibli-style illustration, holding true to the original composition and movement.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                ["assets/gradio/origin.png", None,
                "Remove the bicycle located in the lower center region of the image.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                # blur
                ["assets/gradio/blur.jpg", None,
                "Remove blur, make it clear.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                # 
                ["assets/gradio/00004614_tgt.jpg", None,
                "Add the ingrid fair isle cashmere turtleneck sweater to the person.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],
                # 
                ["assets/gradio/00006581_tgt.jpg", None,
                "Place the belvoir broderie anglaise linen tank on the person in a way that complements their appearance and style.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],
                # 
                ["assets/gradio/00008153_tgt.jpg", None,
                "Integrate may cashmere tank on body.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],
                # 
                ["assets/gradio/00002315_src.jpg", None,
                "Strip away all context and distractions, leaving the pointelle-trimmed cashmere t-shirt floating on a neutral background.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],
                # 
                ["assets/gradio/00002985_src.jpg", None,
                "Generate an image containing only the henry shearling jacket, free from any other visual elements.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                ["assets/gradio/origin.png", None,
                "Add a cat in the center of image.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                # image+image-to-image (compose)
                ["assets/00182555_target.jpg",
                "assets/00182555_InstantStyle_ref_1.jpg",
                "Adapt Image1's content to fit the aesthetic of Image2.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                # replace object
                ["assets/replace_src.png", None,
                "replace motorcycle located in the lower center region of the image with a black bicycle",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                # segmentation
                ["assets/seg_src.jpg", None,
                "Segment the giraffe from the background.\n",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                # detection
                ["assets/det_src.jpg", None,
                "Please depict the vase accurately",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                # image-to-canny
                ["assets/canny_image.jpg", None,
                "Generate a Canny edge map for this image.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                # image-to-mlsd
                ["assets/mlsd_image.jpg", None,
                "Render an MLSD detection overlay for this input image.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                # image-to-normal
                ["assets/normal_image.jpg", None,
                "Convert the input texture into a tangent-space normal map.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                # image-to-sketch
                ["assets/sketch_image.jpg", None,
                "Transform this image into a hand-drawn charcoal sketch.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                # image-to-hed
                ["assets/hed_image.jpg", None,
                "Produce a holistically-nested boundary probability map of this image.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

                # image-to-depth
                ["assets/depth_image.jpg", None,
                "Estimate depth with a focus on background structure.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],
                
                # image-to-image (reconstruction)
                ["assets/rec.jpg", None,
                "Simply reconstruct the original image with no enhancements.",
                example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4],

            ],
            inputs=[img1, img2, text_in, height, width, steps, guidance,
                    ocr_box, t5_box, enhance_gen_box, enhance_und_box, seed, num_imgs],
        )
    # ==============================================

if __name__ == "__main__": 
    demo.launch(
        allowed_paths=["/"],
        server_name=args.server_name, 
        server_port=args.server_port,
        share=args.share, 
        inbrowser=True,
    )


'''

MODEL_PATH="/mnt/data/lb/Remake/FlowWorld/checkpoints/flux_qwen2p5vl_7b_vlm_mlp_siglip_stage2_ts_1024_bs42x8x1_fa_any_11ratio_ema999_ocr_adamw_t5_0p4_lr1e-5_mask_refstyle_extract_resume_run3/checkpoint-12000/model_ema"
FLUX_PATH="/mnt/data/checkpoints/black-forest-labs/FLUX.1-dev"
SIGLIP_PATH="/mnt/data/checkpoints/google/siglip2-so400m-patch16-512"
CUDA_VISIBLE_DEVICES=2 python -m univa.serve.gradio_web_server \
    --model_path ${MODEL_PATH} \
    --flux_path ${FLUX_PATH} \
    --siglip_path ${SIGLIP_PATH}

'''