Spaces:
Runtime error
Runtime error
File size: 14,788 Bytes
0c8d55e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import gradio as gr
import json
import random
import os
from PIL import Image
import matplotlib.pyplot as plt
import io
from PIL import Image as PILImage
import transformers
import copy
import torch
import concurrent.futures
# 常量定义
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = 1
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
DEFAULT_GEN_IMAGE_TOKEN = "<gen_image>"
DEFAULT_IMAGE_TOKEN = "<image>"
def preprocess_qwen_chatml(
sources,
tokenizer: transformers.PreTrainedTokenizer,
system_message: str = "You are a helpful assistant.",
):
# roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"}
roles = {"human": "user", "gpt": "assistant"}
image_token_index = tokenizer.convert_tokens_to_ids("<image>")
# im_start, im_end = tokenizer.additional_special_tokens_ids
im_start, im_end = tokenizer("<|im_start|>").input_ids[0], tokenizer("<|im_end|>").input_ids[0]
# unmask_tokens = ["<|im_start|>", "<|im_start|>", "\n"]
unmask_tokens_idx = [198, im_start, im_end]
nl_tokens = tokenizer("\n").input_ids
# Reset Qwen chat templates so that it won't include system message every time we apply
chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
tokenizer.chat_template = chat_template
# _system = tokenizer("system").input_ids + nl_tokens
# _user = tokenizer("user").input_ids + nl_tokens
# _assistant = tokenizer("assistant").input_ids + nl_tokens
# Apply prompt templates
input_ids, targets = [], []
# print(sources)
for i, source in enumerate(sources):
# print(source[0])
# print(source[0]["from"])
if roles[source[0]["from"]] != roles["human"]:
source = source[1:]
input_id, target = [], []
# New version, use apply chat template
# Build system message for each sentence
input_id += tokenizer.apply_chat_template([{"role" : "system", "content" : system_message}])
target += [IGNORE_INDEX] * len(input_id)
for conv in source:
# Make sure llava data can load
try:
role = conv["role"]
content = conv["content"]
except:
role = conv["from"]
content = conv["value"]
role = roles.get(role, role)
conv = [{"role" : role, "content" : content}]
encode_id = tokenizer.apply_chat_template(conv)
input_id += encode_id
if role in ["user", "system"]:
target += [IGNORE_INDEX] * len(encode_id)
else:
target += encode_id
assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}"
for idx, encode_id in enumerate(input_id):
if encode_id in unmask_tokens_idx:
target[idx] = encode_id
if encode_id == image_token_index:
input_id[idx] = IMAGE_TOKEN_INDEX
# import ipdb;ipdb.set_trace()
input_ids.append(input_id)
targets.append(target)
input_ids = torch.tensor(input_ids, dtype=torch.long)
targets = torch.tensor(targets, dtype=torch.long)
return dict(
input_ids=input_ids, # tensor(bs x seq_len)
labels=targets, # tensor(bs x seq_len)
)
def preprocess_multimodal(
sources,
):
is_multimodal = True
if not is_multimodal:
return sources
is_gen_task = False
for source in sources:
len_source = len(source)
for idx, sentence in enumerate(source):
# DEFAULT_GEN_IMAGE_TOKEN must be the last image, and will be transform to DEFAULT_IMAGE_TOKEN
if DEFAULT_GEN_IMAGE_TOKEN in sentence["value"]:
assert idx + 1 == len_source
assert sentence['value'].count(DEFAULT_GEN_IMAGE_TOKEN) == 1
sentence["value"] = sentence["value"].replace(DEFAULT_GEN_IMAGE_TOKEN, DEFAULT_IMAGE_TOKEN)
is_gen_task = True
if DEFAULT_IMAGE_TOKEN in sentence['value']:
# sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip()
# sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value']
sentence['value'] = sentence['value'].strip()
replace_token = DEFAULT_IMAGE_TOKEN
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)
return sources
# —— Gradio 相关函数 ——
data = []
img_root = ""
def load_json(json_path, image_root):
global data, img_root
img_root = image_root.strip()
try:
with open(json_path.strip(), 'r', encoding='utf-8') as f:
data = json.load(f)
return f"Loaded successfully {len(data)} raw data."
except Exception as e:
return f"Error loading JSON file:{e}"
# def check_image_tags(progress=gr.Progress()):
# global data
# checked, skipped = [], 0
# for sample in progress.tqdm(data, desc="检查中"):
# img_f = sample.get("image", None)
# conv = sample.get("conversations", [])
# cnt = sum(turn["value"].count("<image>") + turn["value"].count("<gen_image>") for turn in conv)
# valid = False
# if img_f is None:
# valid = (cnt == 0)
# elif isinstance(img_f, str):
# valid = (cnt == 1)
# elif isinstance(img_f, list):
# valid = (len(img_f) == cnt)
# if valid:
# checked.append(sample)
# else:
# skipped += 1
# data = checked
# return f"检查完成。有效样本:{len(data)},跳过:{skipped}"
def check_image_tags(min_images=0, progress=gr.Progress()):
global data
if len(data) == 0:
return "Please enter the JSON file path and click Load."
checked, skipped = [], 0
for sample in progress.tqdm(data, desc="Checking"):
img_f = sample.get("image", None)
conv = sample.get("conversations", [])
# 计算该样本中对话里所有出现的 "<image>" 和 "<gen_image>" 的总数
cnt = sum(turn["value"].count("<image>") + turn["value"].count("<gen_image>") for turn in conv)
# 判断是否满足最少图片数量的要求
if cnt < min_images:
skipped += 1
continue
# 判断 image 字段与对话中图片符号数量是否匹配
valid = False
if img_f is None:
valid = (cnt == 0)
elif isinstance(img_f, str):
valid = (cnt == 1)
elif isinstance(img_f, list):
valid = (len(img_f) == cnt)
if valid:
checked.append(sample)
else:
skipped += 1
exist_pct = (len(checked) / len(data) * 100) if len(data) > 0 else 0.0
if skipped == 0:
return (f"✅ Total image path: {len(data)},"
f"Ratio: {exist_pct:.2f}%")
else:
return (f"❌ Total image path: {len(data)},"
f"Success: {len(checked)},"
f"Error: {skipped},"
f"Ratio: {exist_pct:.2f}%")
def show_random_sample():
global data
if len(data) == 0:
return "Please enter the JSON file path and click Load."
if len(img_root) == 0:
return "Please enter the root directory of the image and click Load."
sample = random.choice(data)
img_f = sample.get("image", [])
imgs = [img_f] if isinstance(img_f, str) else (img_f or [])
fulls = [os.path.join(img_root, p) for p in imgs if os.path.exists(os.path.join(img_root, p))]
text = ""
for turn in sample.get("conversations", []):
sp = "🧑 User: " if turn["from"]=="human" else "🤖 AI: "
text += f"{sp}{turn['value'].strip()}\n\n"
return fulls, text
def count_image_distribution_with_plot(progress=gr.Progress()):
global data
if len(data) == 0:
return "Please enter the JSON file path and click Load."
stats = {"nlp data":0,"1 <image>":0,"2 <image>":0,"more than 2":0}
for sample in progress.tqdm(data, desc="Checking"):
img_f = sample.get("image", None)
if img_f is None:
stats["nlp data"] += 1
elif isinstance(img_f, str):
stats["1 <image>"] += 1
else:
L = len(img_f)
if L==1: stats["1 <image>"] += 1
elif L==2: stats["2 <image>"] += 1
else: stats["more than 2"] += 1
total = sum(stats.values())
props = [v/total for v in stats.values()]
labels = list(stats.keys())
plt.figure(figsize=(8,6))
plt.bar(labels, props, color=['#ff9999','#66b3ff','#99ff99','#ffcc99'])
plt.ylabel('Ratio')
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
return PILImage.open(buf)
# —— 多进程验证相关 ——
_tokenizer_global = None
def _init_worker(model_name):
global _tokenizer_global
_tokenizer_global = transformers.AutoTokenizer.from_pretrained(model_name)
_tokenizer_global.add_tokens(["<image>"], special_tokens=True)
def _validate_sample(sample):
# 使用全局 _tokenizer_global
sample = [sample]
# print(copy.deepcopy([e["conversations"] for e in sample]))
sources = preprocess_multimodal(
copy.deepcopy([e["conversations"] for e in sample])
)
preprocess_qwen_chatml(sources, _tokenizer_global)
return True
def validate_format(model_name, progress=gr.Progress()):
global data
if len(data) == 0:
return "Please enter the JSON file path and click Load."
if len(img_root) == 0:
return "Please enter the root directory of the image and click Load."
# _init_worker(model_name)
# for sample in data:
# _validate_sample(sample)
try:
total = len(data)
# 使用与 CPU 核数相同的进程数
with concurrent.futures.ProcessPoolExecutor(
max_workers=os.cpu_count(),
# max_workers=1,
initializer=_init_worker,
initargs=(model_name,)
) as executor:
futures = [executor.submit(_validate_sample, sample) for sample in data]
for i, fut in enumerate(concurrent.futures.as_completed(futures)):
progress((i+1)/total, desc="Checking")
if fut.exception():
# 发现错误,取消剩余
executor.shutdown(cancel_futures=True)
raise fut.exception()
return "✅ Data format valid!"
except Exception as e:
return f"❌ Invalid data format: {e}"
def _check_paths_sample(sample):
total_paths = 0
exist_count = 0
img_f = sample.get("image", None)
if isinstance(img_f, str):
paths = [img_f]
elif isinstance(img_f, list):
paths = img_f
else:
return 0, 0
for p in paths:
total_paths += 1
full = os.path.join(img_root, p)
if os.path.exists(full):
exist_count += 1
return total_paths, exist_count
def check_image_paths(progress=gr.Progress()):
global data
total_paths = 0
exist_count = 0
total_samples = len(data)
if len(data) == 0:
return "Please enter the JSON file path and click Load."
if len(img_root) == 0:
return "Please enter the root directory of the image and click Load."
with concurrent.futures.ProcessPoolExecutor(max_workers=os.cpu_count()) as executor:
futures = [executor.submit(_check_paths_sample, sample) for sample in data]
for i, fut in enumerate(concurrent.futures.as_completed(futures)):
progress((i+1) / total_samples, desc="Checking")
# try:
sample_total, sample_exist = fut.result()
total_paths += sample_total
exist_count += sample_exist
# except Exception as e:
# return str(e)
missing_count = total_paths - exist_count
exist_pct = (exist_count / total_paths * 100) if total_paths > 0 else 0.0
if exist_pct == 100.0:
return (f"✅ Total image path: {total_paths},"
f"Ratio: {exist_pct:.2f}%")
else:
return (f"❌ Total image path: {total_paths},"
f"Found: {exist_count},"
f"Not Found: {missing_count},"
f"Ratio: {exist_pct:.2f}%")
# —— Gradio 界面搭建 ——
with gr.Blocks() as demo:
gr.Markdown("## 🔍 UniWorld Data Verification Tool")
with gr.Row():
json_path = gr.Textbox(label="JSON file path")
image_root = gr.Textbox(label="Image root directory")
load_btn = gr.Button("Load JSON (click here)")
load_status = gr.Textbox(label="Loading status", interactive=False)
with gr.Row():
check_btn = gr.Button("🔍 Check the <image> tag (click here)")
min_images_input = gr.Number(label="Minimum number of images", value=0, precision=0)
check_status = gr.Textbox(label="<image> check results", interactive=False)
with gr.Row():
check_paths_btn = gr.Button("🔍 Check image path (click here)")
check_paths_status = gr.Textbox(label="Path check results", interactive=False)
with gr.Row():
validate_btn = gr.Button("🔍 Verify data format (click here)")
tokenizer_name = gr.Textbox(label="Tokenizer HF name or absolute path", value="/mnt/data/checkpoints/Qwen/Qwen2.5-3B-Instruct")
validate_status= gr.Textbox(label="Verification results", interactive=False)
count_btn = gr.Button("📊 Image quantity distribution (click here)")
count_plot = gr.Image(type="pil", label="Bar chart showing the distribution of image quantities")
gallery = gr.Gallery(label="Image preview", columns=4)
text_box = gr.Textbox(label="Conversation content", lines=10, interactive=False)
random_btn = gr.Button("Randomly view samples (click here)")
# 事件绑定
load_btn.click(load_json, inputs=[json_path, image_root], outputs=load_status)
check_btn.click(check_image_tags, inputs=min_images_input, outputs=check_status)
check_paths_btn.click(check_image_paths, outputs=check_paths_status)
validate_btn.click(validate_format, inputs=tokenizer_name, outputs=validate_status)
count_btn.click(count_image_distribution_with_plot, outputs=count_plot)
random_btn.click(show_random_sample, outputs=[gallery, text_box])
# server_port = 7888
demo.launch(
# server_port=server_port,
allowed_paths=['/']
)
|