|
import argparse
|
|
import torch
|
|
import os
|
|
from omegaconf import OmegaConf
|
|
from tqdm import tqdm
|
|
from torchvision import transforms
|
|
from torchvision.io import write_video
|
|
from einops import rearrange
|
|
import torch.distributed as dist
|
|
from torch.utils.data import DataLoader, SequentialSampler
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
|
|
from pipeline import (
|
|
CausalDiffusionInferencePipeline,
|
|
CausalInferencePipeline
|
|
)
|
|
from utils.dataset import TextDataset, TextImagePairDataset
|
|
from utils.misc import set_seed
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--config_path", type=str, help="Path to the config file")
|
|
parser.add_argument("--checkpoint_path", type=str, help="Path to the checkpoint folder")
|
|
parser.add_argument("--data_path", type=str, help="Path to the dataset")
|
|
parser.add_argument("--extended_prompt_path", type=str, help="Path to the extended prompt")
|
|
parser.add_argument("--output_folder", type=str, help="Output folder")
|
|
parser.add_argument("--num_output_frames", type=int, default=21,
|
|
help="Number of overlap frames between sliding windows")
|
|
parser.add_argument("--i2v", action="store_true", help="Whether to perform I2V (or T2V by default)")
|
|
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA parameters")
|
|
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
|
parser.add_argument("--num_samples", type=int, default=1, help="Number of samples to generate per prompt")
|
|
parser.add_argument("--save_with_index", action="store_true",
|
|
help="Whether to save the video using the index or prompt as the filename")
|
|
args = parser.parse_args()
|
|
|
|
|
|
if "LOCAL_RANK" in os.environ:
|
|
dist.init_process_group(backend='nccl')
|
|
local_rank = int(os.environ["LOCAL_RANK"])
|
|
torch.cuda.set_device(local_rank)
|
|
device = torch.device(f"cuda:{local_rank}")
|
|
world_size = dist.get_world_size()
|
|
set_seed(args.seed + local_rank)
|
|
else:
|
|
device = torch.device("cuda")
|
|
local_rank = 0
|
|
world_size = 1
|
|
set_seed(args.seed)
|
|
|
|
torch.set_grad_enabled(False)
|
|
|
|
config = OmegaConf.load(args.config_path)
|
|
default_config = OmegaConf.load("configs/default_config.yaml")
|
|
config = OmegaConf.merge(default_config, config)
|
|
|
|
|
|
if hasattr(config, 'denoising_step_list'):
|
|
|
|
pipeline = CausalInferencePipeline(config, device=device)
|
|
else:
|
|
|
|
pipeline = CausalDiffusionInferencePipeline(config, device=device)
|
|
|
|
if args.checkpoint_path:
|
|
state_dict = torch.load(args.checkpoint_path, map_location="cpu")
|
|
pipeline.generator.load_state_dict(state_dict['generator' if not args.use_ema else 'generator_ema'])
|
|
|
|
pipeline = pipeline.to(device=device, dtype=torch.bfloat16)
|
|
|
|
|
|
if args.i2v:
|
|
assert not dist.is_initialized(), "I2V does not support distributed inference yet"
|
|
transform = transforms.Compose([
|
|
transforms.Resize((480, 832)),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.5], [0.5])
|
|
])
|
|
dataset = TextImagePairDataset(args.data_path, transform=transform)
|
|
else:
|
|
dataset = TextDataset(prompt_path=args.data_path, extended_prompt_path=args.extended_prompt_path)
|
|
num_prompts = len(dataset)
|
|
print(f"Number of prompts: {num_prompts}")
|
|
|
|
if dist.is_initialized():
|
|
sampler = DistributedSampler(dataset, shuffle=False, drop_last=True)
|
|
else:
|
|
sampler = SequentialSampler(dataset)
|
|
dataloader = DataLoader(dataset, batch_size=1, sampler=sampler, num_workers=0, drop_last=False)
|
|
|
|
|
|
if local_rank == 0:
|
|
os.makedirs(args.output_folder, exist_ok=True)
|
|
|
|
if dist.is_initialized():
|
|
dist.barrier()
|
|
|
|
|
|
def encode(self, videos: torch.Tensor) -> torch.Tensor:
|
|
device, dtype = videos[0].device, videos[0].dtype
|
|
scale = [self.mean.to(device=device, dtype=dtype),
|
|
1.0 / self.std.to(device=device, dtype=dtype)]
|
|
output = [
|
|
self.model.encode(u.unsqueeze(0), scale).float().squeeze(0)
|
|
for u in videos
|
|
]
|
|
|
|
output = torch.stack(output, dim=0)
|
|
return output
|
|
|
|
|
|
for i, batch_data in tqdm(enumerate(dataloader), disable=(local_rank != 0)):
|
|
idx = batch_data['idx'].item()
|
|
|
|
|
|
|
|
if isinstance(batch_data, dict):
|
|
batch = batch_data
|
|
elif isinstance(batch_data, list):
|
|
batch = batch_data[0]
|
|
|
|
all_video = []
|
|
num_generated_frames = 0
|
|
|
|
if args.i2v:
|
|
|
|
prompt = batch['prompts'][0]
|
|
prompts = [prompt] * args.num_samples
|
|
|
|
|
|
image = batch['image'].squeeze(0).unsqueeze(0).unsqueeze(2).to(device=device, dtype=torch.bfloat16)
|
|
|
|
|
|
initial_latent = pipeline.vae.encode_to_latent(image).to(device=device, dtype=torch.bfloat16)
|
|
initial_latent = initial_latent.repeat(args.num_samples, 1, 1, 1, 1)
|
|
|
|
sampled_noise = torch.randn(
|
|
[args.num_samples, args.num_output_frames - 1, 16, 60, 104], device=device, dtype=torch.bfloat16
|
|
)
|
|
else:
|
|
|
|
prompt = batch['prompts'][0]
|
|
extended_prompt = batch['extended_prompts'][0] if 'extended_prompts' in batch else None
|
|
if extended_prompt is not None:
|
|
prompts = [extended_prompt] * args.num_samples
|
|
else:
|
|
prompts = [prompt] * args.num_samples
|
|
initial_latent = None
|
|
|
|
sampled_noise = torch.randn(
|
|
[args.num_samples, args.num_output_frames, 16, 60, 104], device=device, dtype=torch.bfloat16
|
|
)
|
|
|
|
|
|
video, latents = pipeline.inference(
|
|
noise=sampled_noise,
|
|
text_prompts=prompts,
|
|
return_latents=True,
|
|
initial_latent=initial_latent,
|
|
)
|
|
current_video = rearrange(video, 'b t c h w -> b t h w c').cpu()
|
|
all_video.append(current_video)
|
|
num_generated_frames += latents.shape[1]
|
|
|
|
|
|
video = 255.0 * torch.cat(all_video, dim=1)
|
|
|
|
|
|
pipeline.vae.model.clear_cache()
|
|
|
|
|
|
if idx < num_prompts:
|
|
model = "regular" if not args.use_ema else "ema"
|
|
for seed_idx in range(args.num_samples):
|
|
|
|
if args.save_with_index:
|
|
output_path = os.path.join(args.output_folder, f'{idx}-{seed_idx}_{model}.mp4')
|
|
else:
|
|
output_path = os.path.join(args.output_folder, f'{prompt[:100]}-{seed_idx}.mp4')
|
|
write_video(output_path, video[seed_idx], fps=16)
|
|
|