Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,418 Bytes
c80eda9 1fd4136 c80eda9 a2ebda3 c80eda9 449c15f c80eda9 bf9eb4e c80eda9 a2ebda3 0fc95c6 c80eda9 a2ebda3 c80eda9 a2ebda3 ca4d7e4 a2ebda3 c80eda9 449c15f c80eda9 449c15f c80eda9 843c09d c80eda9 843c09d c80eda9 843c09d c80eda9 843c09d c80eda9 bf9eb4e 4f3b7db 449c15f 4f3b7db 449c15f 4f3b7db 1fd4136 c80eda9 bf9eb4e de8cc78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
# app_v4.py
import gradio as gr
import torch
from gradio_client import Client, handle_file
import spaces
import os
import datetime
import io
import moondream as md
from transformers import T5EncoderModel
from diffusers import FluxControlNetPipeline
from diffusers.utils import load_image
from PIL import Image
from threading import Thread
from typing import Generator
from huggingface_hub import CommitScheduler, HfApi, logging
from debug import log_params, scheduler, save_image
logging.set_verbosity_debug()
from model_loader import safe_model_load
from huggingface_hub.utils._runtime import dump_environment_info
def hello(profile: gr.OAuthProfile | None) -> str:
if profile is None:
return "Hello guest! There is a bug with HF ZeroGPUs that are afffecting some usage on certain spaces. Testing out some possible solutions."
return f"You are logged in as {profile.name}. If you run into incorrect messages about ZeroGPU runtime credits being out, PLEASE give me a heads up so I can investigate further."
# Ensure device is set
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = 1000000
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
md_api_key = os.getenv("MD_KEY")
model = md.vl(api_key=md_api_key)
try:
# Set max memory usage for ZeroGPU
torch.cuda.set_per_process_memory_fraction(1.0)
torch.set_float32_matmul_precision("high")
except Exception as e:
print(f"Error setting memory usage: {e}")
text_encoder_2_unquant = T5EncoderModel.from_pretrained(
"LPX55/FLUX.1-merged_uncensored",
subfolder="text_encoder_2",
torch_dtype=torch.bfloat16,
token=huggingface_token
)
pipe = FluxControlNetPipeline.from_pretrained(
"LPX55/FLUX.1M-8step_upscaler-cnet",
torch_dtype=torch.bfloat16,
text_encoder_2=text_encoder_2_unquant,
token=huggingface_token
)
pipe.to("cuda")
try:
dump_environment_info()
except Exception as e:
print(f"Failed to dump env info: {e}")
@spaces.GPU(duration=6, progress=gr.Progress(track_tqdm=True))
@torch.no_grad()
def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end):
generator = torch.Generator().manual_seed(seed)
# Load control image
control_image = load_image(control_image)
w, h = control_image.size
w = w - w % 32
h = h - h % 32
control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2) # Resample.BILINEAR
print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1]))
print(f"PromptLog: {repr(prompt)}")
with torch.inference_mode():
image = pipe(
generator=generator,
prompt=prompt,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=steps,
guidance_scale=guidance_scale,
height=control_image.size[1],
width=control_image.size[0],
control_guidance_start=0.0,
control_guidance_end=guidance_end,
).images[0]
# print("Type: " + str(type(image)))
return image
def combine_caption_focus(caption, focus):
try:
if caption is None:
caption = ""
if focus is None:
focus = "highly detailed photo, raw photography."
return (str(caption) + "\n\n" + str(focus)).strip()
except Exception as e:
print(f"Error combining caption and focus: {e}")
return "highly detailed photo, raw photography."
def generate_caption(control_image):
try:
if control_image is None:
return "Waiting for control image..."
# Generate a detailed caption
mcaption = model.caption(control_image, length="short")
detailed_caption = mcaption["caption"]
print(f"Detailed caption: {detailed_caption}")
return detailed_caption
except Exception as e:
print(f"Error generating caption: {e}")
return "A detailed photograph"
def generate_focus(control_image, focus_list):
try:
if control_image is None:
return None
if focus_list is None:
return ""
# Generate a detailed caption
focus_query = model.query(control_image, "Please provide a concise but illustrative description of the following area(s) of focus: " + focus_list)
focus_description = focus_query["answer"]
print(f"Areas of focus: {focus_description}")
return focus_description
except Exception as e:
print(f"Error generating focus: {e}")
return "highly detailed photo, raw photography."
def process_image(control_image, user_prompt, system_prompt, scale, steps,
controlnet_conditioning_scale, guidance_scale, seed,
guidance_end, temperature, top_p, max_new_tokens, log_prompt):
# Initialize with empty caption
final_prompt = user_prompt.strip()
# If no user prompt provided, generate a caption first
if not final_prompt:
# Generate a detailed caption
print("Generating caption...")
mcaption = model.caption(control_image, length="normal")
detailed_caption = mcaption["caption"]
final_prompt = detailed_caption
yield f"Using caption: {final_prompt}", None, final_prompt
# Show the final prompt being used
yield f"Generating with: {final_prompt}", None, final_prompt
# Generate the image
try:
image = generate_image(
prompt=final_prompt,
scale=scale,
steps=steps,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale=guidance_scale,
seed=seed,
guidance_end=guidance_end
)
try:
debug_img = Image.open(image.save("/tmp/" + str(seed) + "output.png"))
save_image("/tmp/" + str(seed) + "output.png", debug_img)
except Exception as e:
print("Error 160: " + str(e))
log_params(final_prompt, scale, steps, controlnet_conditioning_scale, guidance_scale, seed, guidance_end, control_image, image)
yield f"Completed! Used prompt: {final_prompt}", image, final_prompt
except Exception as e:
print("Error: " + str(e))
yield f"Error: {str(e)}", None, None
with gr.Blocks(title="FLUX Turbo Upscaler", fill_height=True) as demo:
gr.Markdown("⚠️ WIP SPACE - UNFINISHED & BUGGY")
# status_box = gr.Markdown("🔄 Warming up...")
with gr.Row():
with gr.Accordion():
control_image = gr.Image(type="pil", label="Control Image", show_label=False)
with gr.Accordion():
generated_image = gr.Image(type="pil", label="Generated Image", format="png", show_label=False)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(lines=4, info="Enter your prompt here or wait for auto-generation...", label="Image Description")
focus = gr.Textbox(label="Area(s) of Focus", info="e.g. 'face', 'eyes', 'hair', 'clothes', 'background', etc.", value="clothing material, textures, ethnicity")
scale = gr.Slider(1, 3, value=1, label="Scale (Upscale Factor)", step=0.25)
with gr.Row():
generate_button = gr.Button("Generate Image", variant="primary")
caption_button = gr.Button("Generate Caption", variant="secondary")
with gr.Column(scale=1):
seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1)
steps = gr.Slider(2, 16, value=8, label="Steps", step=1)
controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale")
guidance_scale = gr.Slider(1, 30, value=3.5, label="Guidance Scale")
guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End")
with gr.Row():
with gr.Accordion("Auto-Caption settings", open=False, visible=False):
system_prompt = gr.Textbox(
lines=4,
value="Write a straightforward caption for this image. Begin with the main subject and medium. Mention pivotal elements—people, objects, scenery—using confident, definite language. Focus on concrete details like color, shape, texture, and spatial relationships. Show how elements interact. Omit mood and speculative wording. If text is present, quote it exactly. Note any watermarks, signatures, or compression artifacts. Never mention what's absent, resolution, or unobservable details. Vary your sentence structure and keep the description concise, without starting with 'This image is…' or similar phrasing.",
label="System Prompt for Captioning",
visible=False # Changed to visible
)
temperature_slider = gr.Slider(
minimum=0.0, maximum=2.0, value=0.6, step=0.05,
label="Temperature",
info="Higher values make the output more random, lower values make it more deterministic.",
visible=False # Changed to visible
)
top_p_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=0.9, step=0.01,
label="Top-p",
visible=False # Changed to visible
)
max_tokens_slider = gr.Slider(
minimum=1, maximum=2048, value=368, step=1,
label="Max New Tokens",
info="Maximum number of tokens to generate. The model will stop generating if it reaches this limit.",
visible=False # Changed to visible
)
log_prompt = gr.Checkbox(value=True, label="Log", visible=False) # Changed to visible
gr.Markdown("**Tips:** 8 steps is all you need! Incredibly powerful tool, usage instructions coming soon.")
with gr.Accordion("Help,I keep getting ZeroGPU errors.", open=False, elem_id="zgpu"):
msg1 = gr.Markdown()
try_btn = gr.LoginButton()
try:
x_ip_token = request.headers['x-ip-token']
client = Client("LPX55/zerogpu-experiments", hf_token=huggingface_token, headers={"x-ip-token": x_ip_token})
cresult = client.predict(
n=3,
api_name="/predict"
)
print(f"X TOKEN: {x_ip_token}")
print(cresult)
except:
print("Guess we're just going to have to pretend that Spaces have been broken for almost a year now..")
# result = client.predict(
# image=handle_file('https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png'),
# width=1024,
# height=1024,
# overlap_percentage=10,
# num_inference_steps=8,
# resize_option="Full",
# custom_resize_percentage=50,
# prompt_input="Hello!!",
# alignment="Middle",
# overlap_left=True,
# overlap_right=True,
# overlap_top=True,
# overlap_bottom=True,
# x_offset=0,
# y_offset=0,
# api_name="/infer"
# )
caption_state = gr.State()
focus_state = gr.State()
log_state = gr.State()
generate_button.click(
fn=process_image,
inputs=[
control_image, prompt, system_prompt, scale, steps,
controlnet_conditioning_scale, guidance_scale, seed,
guidance_end, temperature_slider, top_p_slider, max_tokens_slider, log_prompt
],
outputs=[log_state, generated_image, prompt]
)
control_image.input(
generate_caption,
inputs=[control_image],
outputs=[caption_state]
).then(
generate_focus,
inputs=[control_image, focus],
outputs=[focus_state]
).then(
combine_caption_focus,
inputs=[caption_state, focus_state],
outputs=[prompt]
)
caption_button.click(
fn=generate_caption,
inputs=[control_image],
outputs=[prompt]
).then(
generate_focus,
inputs=[control_image, focus],
outputs=[focus_state]
).then(
combine_caption_focus,
inputs=[caption_state, focus_state],
outputs=[prompt]
)
demo.load(hello, inputs=None, outputs=msg1)
demo.queue().launch(show_error=True)
|