Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn.functional as F | |
| from diffusers.utils import load_image, check_min_version | |
| from controlnet_flux import FluxControlNetModel | |
| from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline | |
| import os | |
| import numpy as np | |
| from PIL import Image | |
| import argparse | |
| from diffusers.models.attention_processor import Attention | |
| from dataclasses import dataclass | |
| from typing import Any, List, Dict, Optional, Union, Tuple | |
| import cv2 | |
| from transformers import AutoProcessor, pipeline, AutoModelForMaskGeneration | |
| class BoundingBox: | |
| xmin: int | |
| ymin: int | |
| xmax: int | |
| ymax: int | |
| def xyxy(self) -> List[float]: | |
| return [self.xmin, self.ymin, self.xmax, self.ymax] | |
| class DetectionResult: | |
| score: float | |
| label: str | |
| box: BoundingBox | |
| mask: Optional[np.array] = None | |
| def from_dict(cls, detection_dict: Dict) -> 'DetectionResult': | |
| return cls(score=detection_dict['score'], | |
| label=detection_dict['label'], | |
| box=BoundingBox(xmin=detection_dict['box']['xmin'], | |
| ymin=detection_dict['box']['ymin'], | |
| xmax=detection_dict['box']['xmax'], | |
| ymax=detection_dict['box']['ymax'])) | |
| def mask_to_polygon(mask: np.ndarray) -> List[List[int]]: | |
| # Find contours in the binary mask | |
| contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
| # Find the contour with the largest area | |
| largest_contour = max(contours, key=cv2.contourArea) | |
| # Extract the vertices of the contour | |
| polygon = largest_contour.reshape(-1, 2).tolist() | |
| return polygon | |
| def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray: | |
| """ | |
| Convert a polygon to a segmentation mask. | |
| Args: | |
| - polygon (list): List of (x, y) coordinates representing the vertices of the polygon. | |
| - image_shape (tuple): Shape of the image (height, width) for the mask. | |
| Returns: | |
| - np.ndarray: Segmentation mask with the polygon filled. | |
| """ | |
| # Create an empty mask | |
| mask = np.zeros(image_shape, dtype=np.uint8) | |
| # Convert polygon to an array of points | |
| pts = np.array(polygon, dtype=np.int32) | |
| # Fill the polygon with white color (255) | |
| cv2.fillPoly(mask, [pts], color=(255,)) | |
| return mask | |
| def get_boxes(results: DetectionResult) -> List[List[List[float]]]: | |
| boxes = [] | |
| for result in results: | |
| xyxy = result.box.xyxy | |
| boxes.append(xyxy) | |
| return [boxes] | |
| def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]: | |
| masks = masks.cpu().float() | |
| masks = masks.permute(0, 2, 3, 1) | |
| masks = masks.mean(axis=-1) | |
| masks = (masks > 0).int() | |
| masks = masks.numpy().astype(np.uint8) | |
| masks = list(masks) | |
| if polygon_refinement: | |
| for idx, mask in enumerate(masks): | |
| shape = mask.shape | |
| polygon = mask_to_polygon(mask) | |
| mask = polygon_to_mask(polygon, shape) | |
| masks[idx] = mask | |
| return masks | |
| def detect( | |
| object_detector, | |
| image: Image.Image, | |
| labels: List[str], | |
| threshold: float = 0.3, | |
| detector_id: Optional[str] = None | |
| ) -> List[Dict[str, Any]]: | |
| """ | |
| Use Grounding DINO to detect a set of labels in an image in a zero-shot fashion. | |
| """ | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| detector_id = detector_id if detector_id is not None else "IDEA-Research/grounding-dino-tiny" | |
| # object_detector = detect_pipeline(model=detector_id, task="zero-shot-object-detection", device=device) | |
| labels = [label if label.endswith(".") else label+"." for label in labels] | |
| results = object_detector(image, candidate_labels=labels, threshold=threshold) | |
| results = [DetectionResult.from_dict(result) for result in results] | |
| return results | |
| def segment( | |
| segmentator, | |
| processor, | |
| image: Image.Image, | |
| detection_results: List[Dict[str, Any]], | |
| polygon_refinement: bool = False, | |
| ) -> List[DetectionResult]: | |
| """ | |
| Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes. | |
| """ | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| boxes = get_boxes(detection_results) | |
| inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(device) | |
| outputs = segmentator(**inputs) | |
| masks = processor.post_process_masks( | |
| masks=outputs.pred_masks, | |
| original_sizes=inputs.original_sizes, | |
| reshaped_input_sizes=inputs.reshaped_input_sizes | |
| )[0] | |
| masks = refine_masks(masks, polygon_refinement) | |
| for detection_result, mask in zip(detection_results, masks): | |
| detection_result.mask = mask | |
| return detection_results | |
| def grounded_segmentation( | |
| detect_pipeline, | |
| segmentator, | |
| segment_processor, | |
| image: Union[Image.Image, str], | |
| labels: List[str], | |
| threshold: float = 0.3, | |
| polygon_refinement: bool = False, | |
| detector_id: Optional[str] = None, | |
| segmenter_id: Optional[str] = None | |
| ) -> Tuple[np.ndarray, List[DetectionResult]]: | |
| if isinstance(image, str): | |
| image = load_image(image) | |
| detections = detect(detect_pipeline, image, labels, threshold, detector_id) | |
| detections = segment(segmentator, segment_processor, image, detections, polygon_refinement) | |
| return np.array(image), detections | |
| class CustomFluxAttnProcessor2_0: | |
| """Attention processor used typically in processing the SD3-like self-attention projections.""" | |
| def __init__(self, height=44, width=88, attn_enforce=1.0): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| self.height = height | |
| self.width = width | |
| self.num_pixels = height * width | |
| self.step = 0 | |
| self.attn_enforce = attn_enforce | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| image_rotary_emb: Optional[torch.Tensor] = None, | |
| ) -> torch.FloatTensor: | |
| self.step += 1 | |
| batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| # `sample` projections. | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| if attn.norm_q is not None: | |
| query = attn.norm_q(query) | |
| if attn.norm_k is not None: | |
| key = attn.norm_k(key) | |
| # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` | |
| if encoder_hidden_states is not None: | |
| # `context` projections. | |
| encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
| encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
| encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( | |
| batch_size, -1, attn.heads, head_dim | |
| ).transpose(1, 2) | |
| encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( | |
| batch_size, -1, attn.heads, head_dim | |
| ).transpose(1, 2) | |
| encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( | |
| batch_size, -1, attn.heads, head_dim | |
| ).transpose(1, 2) | |
| if attn.norm_added_q is not None: | |
| encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) | |
| if attn.norm_added_k is not None: | |
| encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) | |
| # attention | |
| query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) | |
| key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) | |
| value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) | |
| if image_rotary_emb is not None: | |
| from diffusers.models.embeddings import apply_rotary_emb | |
| query = apply_rotary_emb(query, image_rotary_emb) | |
| key = apply_rotary_emb(key, image_rotary_emb) | |
| ######### attn_enforce | |
| if self.attn_enforce != 1.0: | |
| attn_probs = (torch.einsum('bhqd,bhkd->bhqk', query, key) * attn.scale).softmax(dim=-1) | |
| img_attn_probs = attn_probs[:, :, -self.num_pixels:, -self.num_pixels:] | |
| img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.height, self.width, self.height, self.width)) | |
| img_attn_probs[:, :, :, self.width//2:, :, :self.width//2] *= self.attn_enforce | |
| img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.num_pixels, self.num_pixels)) | |
| attn_probs[:, :, -self.num_pixels:, -self.num_pixels:] = img_attn_probs | |
| hidden_states = torch.einsum('bhqk,bhkd->bhqd', attn_probs, value) | |
| else: | |
| hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| if encoder_hidden_states is not None: | |
| encoder_hidden_states, hidden_states = ( | |
| hidden_states[:, : encoder_hidden_states.shape[1]], | |
| hidden_states[:, encoder_hidden_states.shape[1] :], | |
| ) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
| return hidden_states, encoder_hidden_states | |
| else: | |
| return hidden_states | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--attn_enforce', type=float, default=1.3) | |
| parser.add_argument('--ctrl_scale', type=float, default=0.95) | |
| parser.add_argument('--width', type=int, default=768) | |
| parser.add_argument('--height', type=int, default=768) | |
| parser.add_argument('--pixel_offset', type=int, default=8) | |
| parser.add_argument('--input_image_path', type=str, default='./assets/bear_plushie.jpg') | |
| parser.add_argument('--subject_name', type=str, default='bear plushie') | |
| parser.add_argument('--target_prompt', type=str, default='a photo of a bear plushie surfing on the beach') | |
| args = parser.parse_args() | |
| # Build pipeline | |
| controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16) | |
| pipe = FluxControlNetInpaintingPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| controlnet=controlnet, | |
| torch_dtype=torch.bfloat16 | |
| ).to("cuda") | |
| pipe.transformer.to(torch.bfloat16) | |
| pipe.controlnet.to(torch.bfloat16) | |
| base_attn_procs = pipe.transformer.attn_processors.copy() | |
| detector_id = "IDEA-Research/grounding-dino-tiny" | |
| segmenter_id = "facebook/sam-vit-base" | |
| segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).cuda() | |
| segment_processor = AutoProcessor.from_pretrained(segmenter_id) | |
| object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=torch.device("cuda")) | |
| def segment_image(image, object_name): | |
| image_array, detections = grounded_segmentation( | |
| object_detector, | |
| segmentator, | |
| segment_processor, | |
| image=image, | |
| labels=object_name, | |
| threshold=0.3, | |
| polygon_refinement=True, | |
| ) | |
| segment_result = image_array * np.expand_dims(detections[0].mask / 255, axis=-1) + np.ones_like(image_array) * ( | |
| 1 - np.expand_dims(detections[0].mask / 255, axis=-1)) * 255 | |
| segmented_image = Image.fromarray(segment_result.astype(np.uint8)) | |
| return segmented_image | |
| def make_diptych(image): | |
| ref_image = np.array(image) | |
| ref_image = np.concatenate([ref_image, np.zeros_like(ref_image)], axis=1) | |
| ref_image = Image.fromarray(ref_image) | |
| return ref_image | |
| # Load image and mask | |
| width = args.width + args.pixel_offset * 2 | |
| height = args.height + args.pixel_offset * 2 | |
| size = (width*2, height) | |
| subject_name = args.subject_name | |
| base_prompt = f"a photo of {subject_name}" | |
| target_prompt = args.target_prompt | |
| diptych_text_prompt = f"A diptych with two side-by-side images of same {subject_name}. On the left, {base_prompt}. On the right, replicate this {subject_name} exactly but as {target_prompt}" | |
| reference_image = load_image(args.input_image_path).resize((width, height)).convert("RGB") | |
| ctrl_scale=args.ctrl_scale | |
| segmented_image = segment_image(reference_image, subject_name) | |
| mask_image = np.concatenate([np.zeros((height, width, 3)), np.ones((height, width, 3))*255], axis=1) | |
| mask_image = Image.fromarray(mask_image.astype(np.uint8)) | |
| diptych_image_prompt = make_diptych(segmented_image) | |
| new_attn_procs = base_attn_procs.copy() | |
| for i, (k, v) in enumerate(new_attn_procs.items()): | |
| new_attn_procs[k] = CustomFluxAttnProcessor2_0(height=height // 16, width=width // 16 * 2, attn_enforce=args.attn_enforce) | |
| pipe.transformer.set_attn_processor(new_attn_procs) | |
| generator = torch.Generator(device="cuda").manual_seed(42) | |
| # Inpaint | |
| result = pipe( | |
| prompt=diptych_text_prompt, | |
| height=size[1], | |
| width=size[0], | |
| control_image=diptych_image_prompt, | |
| control_mask=mask_image, | |
| num_inference_steps=30, | |
| generator=generator, | |
| controlnet_conditioning_scale=ctrl_scale, | |
| guidance_scale=3.5, | |
| negative_prompt="", | |
| true_guidance_scale=3.5 | |
| ).images[0] | |
| result = result.crop((width, 0, width*2, height)) | |
| result = result.crop((args.pixel_offset, args.pixel_offset, width-args.pixel_offset, height-args.pixel_offset)) | |
| result.save('result.png') |