Spaces:
Running
Running
from typing import List | |
from data.dataloader import build_dataloader | |
# from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel | |
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel | |
import torch | |
import sys | |
from torch import nn | |
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel | |
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg | |
from methods.elasticdnn.model.base import ElasticDNNUtil | |
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util | |
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util | |
from methods.elasticdnn.model.bert import ElasticBertUtil | |
from utils.common.file import ensure_dir | |
from utils.dl.common.model import LayerActivation, get_module, get_parameter | |
from utils.common.exp import save_models_dict_for_init, get_res_save_dir | |
from data import build_scenario | |
from utils.dl.common.loss import CrossEntropyLossSoft | |
import torch.nn.functional as F | |
from utils.dl.common.env import create_tbwriter | |
import os | |
from utils.common.log import logger | |
from utils.common.data_record import write_json | |
# from methods.shot.shot import OnlineShotModel | |
from methods.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg | |
import tqdm | |
from methods.feat_align.mmd import mmd_rbf | |
class ElasticDNN_SeClsOnlineModel(ElasticDNN_OnlineModel): | |
def get_accuracy(self, test_loader, *args, **kwargs): | |
acc = 0 | |
sample_num = 0 | |
self.to_eval_mode() | |
with torch.no_grad(): | |
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) | |
for batch_index, (x, y) in pbar: | |
for k, v in x.items(): | |
if isinstance(v, torch.Tensor): | |
x[k] = v.to(self.device) | |
y = y.to(self.device) | |
output = self.infer(x) | |
pred = F.softmax(output, dim=1).argmax(dim=1) | |
correct = torch.eq(pred, y).sum().item() | |
acc += correct | |
sample_num += len(y) | |
pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, ' | |
f'cur_batch_acc: {(correct / len(y)):.4f}') | |
acc /= sample_num | |
return acc | |
def get_elastic_dnn_util(self) -> ElasticDNNUtil: | |
return ElasticBertUtil() | |
def get_fm_matched_param_of_md_param(self, md_param_name): | |
# only between qkv.weight, norm.weight/bias | |
self_param_name = md_param_name | |
fm = self.models_dict['fm'] | |
if any([k in self_param_name for k in ['fbs', 'ab', 'embeddings']]): | |
return None | |
p = get_parameter(self.models_dict['md'], self_param_name) | |
if p.dim() == 0: | |
return None | |
elif p.dim() == 1 and 'LayerNorm' in self_param_name and 'weight' in self_param_name: | |
return get_parameter(fm, self_param_name) | |
# 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz | |
if ('query' in self_param_name or 'key' in self_param_name or \ | |
'value' in self_param_name) and ('weight' in self_param_name): | |
ss = self_param_name.split('.') | |
fm_qkv_name = '.'.join(ss[0: -1]) + '.fc' | |
fm_qkv = get_module(fm, fm_qkv_name) | |
fm_abs_name = '.'.join(ss[0: -1]) + '.ab' | |
fm_abs = get_module(fm, fm_abs_name) | |
# NOTE: unrecoverable operation! multiply LoRA parameters to allow it being updated in update_fm_param() | |
# TODO: if fm will be used for inference, _mul_lora_weight will not be applied! | |
if not hasattr(fm_abs, '_mul_lora_weight'): | |
logger.debug(f'set _mul_lora_weight in {fm_abs_name}') | |
setattr(fm_abs, '_mul_lora_weight', | |
nn.Parameter(fm_abs[1].weight @ fm_abs[0].weight)) | |
return torch.cat([ | |
fm_qkv.weight.data, # task-agnositc params | |
fm_abs._mul_lora_weight.data # task-specific params (LoRA) | |
], dim=0) | |
# elif 'to_qkv.bias' in self_param_name: | |
# ss = self_param_name.split('.') | |
# fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias' | |
# return get_parameter(fm, fm_qkv_name) | |
elif 'dense' in self_param_name and 'weight' in self_param_name: | |
fm_param_name = self_param_name.replace('.linear', '') | |
return get_parameter(fm, fm_param_name) | |
# elif 'mlp.fc2' in self_param_name and 'weight' in self_param_name: | |
# fm_param_name = self_param_name | |
# return get_parameter(fm, fm_param_name) | |
else: | |
# return get_parameter(fm, self_param_name) | |
return None | |
def update_fm_param(self, md_param_name, cal_new_fm_param_by_md_param): | |
if not ('query' in md_param_name or 'key' in md_param_name or 'value' in md_param_name): | |
matched_fm_param_ref = self.get_fm_matched_param_of_md_param(md_param_name) | |
matched_fm_param_ref.copy_(cal_new_fm_param_by_md_param) | |
else: | |
new_fm_attn_weight, new_fm_lora_weight = torch.chunk(cal_new_fm_param_by_md_param, 2, 0) | |
ss = md_param_name.split('.') | |
fm = self.models_dict['fm'] | |
# update task-agnostic parameters | |
fm_qkv_name = '.'.join(ss[0: -1]) + '.fc' | |
fm_qkv = get_module(fm, fm_qkv_name) | |
fm_qkv.weight.data.copy_(new_fm_attn_weight) | |
# update task-specific parameters | |
fm_abs_name = '.'.join(ss[0: -1]) + '.ab' | |
fm_abs = get_module(fm, fm_abs_name) | |
fm_abs._mul_lora_weight.data.copy_(new_fm_lora_weight) # TODO: this will not be applied in inference! | |
def get_md_matched_param_of_fm_param(self, fm_param_name): | |
return super().get_md_matched_param_of_fm_param(fm_param_name) | |
def get_md_matched_param_of_sd_param(self, sd_param_name): | |
# raise NotImplementedError | |
# only between qkv.weight, norm.weight/bias | |
self_param_name = sd_param_name | |
md = self.models_dict['md'] | |
if any([k in self_param_name for k in ['fbs', 'ab', 'embeddings']]): | |
return None | |
p = get_parameter(self.models_dict['sd'], self_param_name) | |
if p.dim() == 0: | |
return None | |
elif p.dim() == 1 and 'LayerNorm' in self_param_name and 'weight' in self_param_name: | |
return get_parameter(md, self_param_name) | |
# 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz | |
if ('query' in self_param_name or 'key' in self_param_name or \ | |
'value' in self_param_name) and ('weight' in self_param_name): | |
return get_parameter(md, self_param_name) # NOTE: no fbs in qkv! | |
# elif 'to_qkv.bias' in self_param_name: | |
# ss = self_param_name.split('.') | |
# fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias' | |
# return get_parameter(fm, fm_qkv_name) | |
elif 'intermediate.dense.0.weight' in self_param_name: | |
fm_param_name = '.'.join(self_param_name.split('.')[0: -2]) + '.linear.weight' | |
return get_parameter(md, fm_param_name) | |
elif 'output.dense' in self_param_name and 'weight' in self_param_name: | |
fm_param_name = self_param_name | |
return get_parameter(md, fm_param_name) | |
else: | |
# return get_parameter(fm, self_param_name) | |
return None | |
def get_task_head_params(self): | |
head = get_module(self.models_dict['sd'], 'classifier') | |
return list(head.parameters()) | |
class SeClsOnlineFeatAlignModel(OnlineFeatAlignModel): | |
def get_trained_params(self): | |
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'query' in n or 'key' in n or 'value' in n or 'dense' in n or 'LayerNorm' in n] | |
return qkv_and_norm_params | |
def get_feature_hook(self): | |
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), False, self.device) | |
def forward_to_get_task_loss(self, x, y): | |
return F.cross_entropy(self.infer(x), y) | |
def get_mmd_loss(self, f1, f2): | |
return mmd_rbf(f1, f2) | |
def infer(self, x, *args, **kwargs): | |
return self.models_dict['main'](**x) | |
def get_accuracy(self, test_loader, *args, **kwargs): | |
acc = 0 | |
sample_num = 0 | |
self.to_eval_mode() | |
with torch.no_grad(): | |
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) | |
for batch_index, (x, y) in pbar: | |
for k, v in x.items(): | |
if isinstance(v, torch.Tensor): | |
x[k] = v.to(self.device) | |
y = y.to(self.device) | |
output = self.infer(x) | |
pred = F.softmax(output, dim=1).argmax(dim=1) | |
correct = torch.eq(pred, y).sum().item() | |
if batch_index == 0: | |
logger.info(f'{pred}, {y}') | |
acc += correct | |
sample_num += len(y) | |
pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, ' | |
f'cur_batch_acc: {(correct / len(y)):.4f}') | |
acc /= sample_num | |
return acc |