caohy666 commited on
Commit
f9c4e37
·
1 Parent(s): 80aa135

<feat> add gradio app header.

Browse files
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import torch
4
+ import diffusers
5
+ import transformers
6
+ import argparse
7
+ import peft
8
+ import copy
9
+ import cv2
10
+ import gradio as gr
11
+ import numpy as np
12
+
13
+ from peft import LoraConfig
14
+ from omegaconf import OmegaConf
15
+ from safetensors.torch import safe_open
16
+ from PIL import Image, ImageDraw, ImageFilter
17
+
18
+ from models import HunyuanVideoTransformer3DModel
19
+ from pipelines import HunyuanVideoImageToVideoPipeline
20
+
21
+
22
+ header = """
23
+ # DRA-Ctrl Gradio App
24
+
25
+ <div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
26
+ <a href="https://arxiv.org/pdf/2505.23325"><img src="https://img.shields.io/badge/ariXv-Paper-A42C25.svg" alt="arXiv"></a>
27
+ <a href="https://huggingface.co/Kunbyte/DRA-Ctrl"><img src="https://img.shields.io/badge/🤗-Model-ffbd45.svg" alt="HuggingFace"></a>
28
+ <a href="https://github.com/Kunbyte-AI/DRA-Ctrl"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
29
+ <a href="https://dra-ctrl-2025.github.io/DRA-Ctrl/"><img src="https://img.shields.io/badge/Project-Page-blue" alt="Project"></a>
30
+ </div>
31
+ """
32
+
33
+ def create_app():
34
+ with gr.Blocks() as app:
35
+ gr.Markdown(header, elem_id="header")
36
+
37
+
38
+ if __name__ == "__main__":
39
+ create_app().launch(debug=True, ssr_mode=False)
models/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .hyvideo.transformer_hunyuan_video_i2v import HunyuanVideoTransformer3DModel
models/hyvideo/transformer_hunyuan_video_i2v.py ADDED
@@ -0,0 +1,1238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The Hunyuan Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # Modified by [Hengyuan Cao] in 2025.
15
+
16
+ from typing import Any, Dict, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ import torch.nn.functional as F
21
+
22
+ from diffusers.loaders import FromOriginalModelMixin
23
+
24
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
25
+ from diffusers.loaders import PeftAdapterMixin
26
+ from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
27
+ from diffusers.models.attention import FeedForward
28
+ from diffusers.models.attention_processor import Attention, AttentionProcessor
29
+ from diffusers.models.cache_utils import CacheMixin
30
+ from diffusers.models.embeddings import (
31
+ CombinedTimestepTextProjEmbeddings,
32
+ PixArtAlphaTextProjection,
33
+ TimestepEmbedding,
34
+ Timesteps,
35
+ get_1d_rotary_pos_embed,
36
+ )
37
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
38
+ from diffusers.models.modeling_utils import ModelMixin
39
+ from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle, FP32LayerNorm
40
+ from torch.nn.utils.rnn import pad_sequence
41
+
42
+ try:
43
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
44
+ FLASH_ATTN_AVALIABLE = True
45
+ except:
46
+ FLASH_ATTN_AVALIABLE = False
47
+
48
+
49
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
50
+
51
+
52
+ class HunyuanVideoAttnProcessor2_0:
53
+ def __init__(self, inference_subject_driven: bool = False):
54
+ if not hasattr(F, "scaled_dot_product_attention"):
55
+ raise ImportError(
56
+ "HunyuanVideoAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0."
57
+ )
58
+ self.inference_subject_driven = inference_subject_driven
59
+
60
+ def __call__(
61
+ self,
62
+ attn: Attention,
63
+ hidden_states: torch.Tensor,
64
+ encoder_hidden_states: Optional[torch.Tensor] = None,
65
+ attention_mask: Optional[torch.Tensor] = None,
66
+ image_rotary_emb: Optional[torch.Tensor] = None,
67
+ ) -> torch.Tensor:
68
+ if attn.add_q_proj is None and encoder_hidden_states is not None:
69
+ hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
70
+
71
+ # 1. QKV projections
72
+ query = attn.to_q(hidden_states)
73
+ key = attn.to_k(hidden_states)
74
+ value = attn.to_v(hidden_states)
75
+
76
+ query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
77
+ key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
78
+ value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
79
+
80
+ # 2. QK normalization
81
+ if attn.norm_q is not None:
82
+ query = attn.norm_q(query)
83
+ if attn.norm_k is not None:
84
+ key = attn.norm_k(key)
85
+
86
+ # 3. Rotational positional embeddings applied to latent stream
87
+ if image_rotary_emb is not None:
88
+ from diffusers.models.embeddings import apply_rotary_emb
89
+
90
+ if attn.add_q_proj is None and encoder_hidden_states is not None:
91
+ query = torch.cat(
92
+ [
93
+ apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
94
+ query[:, :, -encoder_hidden_states.shape[1] :],
95
+ ],
96
+ dim=2,
97
+ )
98
+ key = torch.cat(
99
+ [
100
+ apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
101
+ key[:, :, -encoder_hidden_states.shape[1] :],
102
+ ],
103
+ dim=2,
104
+ )
105
+ else:
106
+ query = apply_rotary_emb(query, image_rotary_emb)
107
+ key = apply_rotary_emb(key, image_rotary_emb)
108
+
109
+ # 4. Encoder condition QKV projection and normalization
110
+ if attn.add_q_proj is not None and encoder_hidden_states is not None:
111
+ encoder_query = attn.add_q_proj(encoder_hidden_states)
112
+ encoder_key = attn.add_k_proj(encoder_hidden_states)
113
+ encoder_value = attn.add_v_proj(encoder_hidden_states)
114
+
115
+ encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
116
+ encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
117
+ encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
118
+
119
+ if attn.norm_added_q is not None:
120
+ encoder_query = attn.norm_added_q(encoder_query)
121
+ if attn.norm_added_k is not None:
122
+ encoder_key = attn.norm_added_k(encoder_key)
123
+
124
+ query = torch.cat([query, encoder_query], dim=2)
125
+ key = torch.cat([key, encoder_key], dim=2)
126
+ value = torch.cat([value, encoder_value], dim=2)
127
+
128
+ query = query.transpose(1, 2) # batch, sequence, num_head, head_dim
129
+ key = key.transpose(1, 2)
130
+ value = value.transpose(1, 2)
131
+
132
+ # 5. Attention
133
+ if FLASH_ATTN_AVALIABLE:
134
+ if attention_mask is None:
135
+ hidden_states = flash_attn_func(query, key, value, dropout=0.0)
136
+ else:
137
+ B, S, H, D = query.size()
138
+ unit_img_seq_len = 1024
139
+ unit_txt_seq_len = 144 + 252
140
+ if not (unit_img_seq_len*4+unit_txt_seq_len == S or
141
+ unit_img_seq_len*4+unit_txt_seq_len*2 == S):
142
+ raise ValueError("Get wrong sequence length.")
143
+ if S == unit_img_seq_len*4+unit_txt_seq_len:
144
+ seg_start = [0, unit_img_seq_len, unit_img_seq_len*4]
145
+ seg_end = [unit_img_seq_len, unit_img_seq_len*4, unit_img_seq_len*4+unit_txt_seq_len]
146
+ k_segs = [[0], [0, 1, 2], [1, 2]]
147
+ elif S == unit_img_seq_len*4+unit_txt_seq_len*2:
148
+ seg_start = [0, unit_img_seq_len, unit_img_seq_len*4, unit_img_seq_len*4+unit_txt_seq_len]
149
+ seg_end = [unit_img_seq_len, unit_img_seq_len*4, unit_img_seq_len*4+unit_txt_seq_len, S]
150
+ k_segs = [[0, 3], [0, 1, 2], [1,2], [0, 3]]
151
+ valid_indices = attention_mask[:, 0, 0]
152
+ q_lens = torch.tensor([u[i:j].long().sum().item() for u in valid_indices for i,j in zip(seg_start, seg_end)],
153
+ dtype=torch.int32, device=valid_indices.device)
154
+ k_lens = torch.tensor([sum([u[seg_start[seg]:seg_end[seg]].long().sum().item() for seg in segs]) for u in valid_indices for segs in k_segs],
155
+ dtype=torch.int32, device=valid_indices.device)
156
+ query = torch.cat([u[i:j][v[i:j]] for u,v in zip(query, valid_indices) for i,j in zip(seg_start, seg_end)], dim=0)
157
+ if self.inference_subject_driven:
158
+ key = torch.cat([torch.cat([ torch.cat([u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]][:144], u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]][144:] + 0.6 * u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]][144:].abs().mean()], dim=0) if segs == [0, 1, 2] and seg == 2 else u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]] for seg in segs], dim=0) \
159
+ for u,v in zip(key, valid_indices) for segs in k_segs], dim=0)
160
+ else:
161
+ key = torch.cat([torch.cat([u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]] for seg in segs], dim=0) \
162
+ for u,v in zip(key, valid_indices) for segs in k_segs], dim=0)
163
+ value = torch.cat([torch.cat([u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]] for seg in segs], dim=0) \
164
+ for u,v in zip(value, valid_indices) for segs in k_segs], dim=0)
165
+ cu_seqlens_q = F.pad(q_lens.cumsum(dim=0), (1, 0)).to(torch.int32)
166
+ cu_seqlens_k = F.pad(k_lens.cumsum(dim=0), (1, 0)).to(torch.int32)
167
+ max_seqlen_q = torch.max(q_lens).item()
168
+ max_seqlen_k = torch.max(k_lens).item()
169
+ hidden_states = flash_attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k)
170
+ num_seq_parts = len(k_segs)
171
+ hidden_states = pad_sequence([
172
+ hidden_states[start: end]
173
+ for start, end in zip(cu_seqlens_q[::num_seq_parts][:-1], cu_seqlens_q[::num_seq_parts][1:])
174
+ ], batch_first=True)
175
+ hidden_states = F.pad(
176
+ hidden_states,
177
+ (0, 0, 0, 0, 0, S - hidden_states.size(1), 0, 0)
178
+ )
179
+ else:
180
+ query = query.permute(0, 2, 1, 3) # batch, num_head, sequence, head_dim
181
+ key = key.permute(0, 2, 1, 3)
182
+ value = value.permute(0, 2, 1, 3)
183
+ hidden_states = F.scaled_dot_product_attention(
184
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
185
+ ) # use sdpa in torch may generate black output, upgrade to >=2.5.1 may solve this
186
+ hidden_states = hidden_states.transpose(1, 2)
187
+
188
+ # flatten num_head * head_dim
189
+ hidden_states = hidden_states.flatten(2, 3)
190
+ hidden_states = hidden_states.to(query.dtype)
191
+
192
+
193
+ # 6. Output projection
194
+ if encoder_hidden_states is not None:
195
+ hidden_states, encoder_hidden_states = (
196
+ hidden_states[:, : -encoder_hidden_states.shape[1]],
197
+ hidden_states[:, -encoder_hidden_states.shape[1] :],
198
+ )
199
+
200
+ if getattr(attn, "to_out", None) is not None:
201
+ hidden_states = attn.to_out[0](hidden_states)
202
+ hidden_states = attn.to_out[1](hidden_states)
203
+
204
+ if getattr(attn, "to_add_out", None) is not None:
205
+ encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
206
+
207
+ return hidden_states, encoder_hidden_states
208
+
209
+
210
+ class HunyuanVideoPatchEmbed(nn.Module):
211
+ def __init__(
212
+ self,
213
+ patch_size: Union[int, Tuple[int, int, int]] = 16,
214
+ in_chans: int = 3,
215
+ embed_dim: int = 768,
216
+ ) -> None:
217
+ super().__init__()
218
+
219
+ patch_size = (patch_size, patch_size, patch_size) if isinstance(patch_size, int) else patch_size
220
+ self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
221
+
222
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
223
+ hidden_states = self.proj(hidden_states)
224
+ hidden_states = hidden_states.flatten(2).transpose(1, 2) # BCFHW -> BNC
225
+ return hidden_states
226
+
227
+
228
+ class HunyuanVideoAdaNorm(nn.Module):
229
+ def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
230
+ super().__init__()
231
+
232
+ out_features = out_features or 2 * in_features
233
+ self.linear = nn.Linear(in_features, out_features)
234
+ self.nonlinearity = nn.SiLU()
235
+
236
+ def forward(
237
+ self, temb: torch.Tensor
238
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
239
+ temb = self.linear(self.nonlinearity(temb))
240
+ gate_msa, gate_mlp = temb.chunk(2, dim=1)
241
+ gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
242
+ return gate_msa, gate_mlp
243
+
244
+
245
+ class HunyuanVideoTokenReplaceAdaLayerNormZero(nn.Module):
246
+ def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True):
247
+ super().__init__()
248
+
249
+ self.silu = nn.SiLU()
250
+ self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
251
+
252
+ if norm_type == "layer_norm":
253
+ self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
254
+ elif norm_type == "fp32_layer_norm":
255
+ self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
256
+ else:
257
+ raise ValueError(
258
+ f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
259
+ )
260
+
261
+ def forward(
262
+ self,
263
+ hidden_states: torch.Tensor,
264
+ emb: torch.Tensor,
265
+ token_replace_emb: torch.Tensor,
266
+ first_frame_num_tokens: int,
267
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
268
+ emb = self.linear(self.silu(emb))
269
+ token_replace_emb = self.linear(self.silu(token_replace_emb))
270
+
271
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
272
+ tr_shift_msa, tr_scale_msa, tr_gate_msa, tr_shift_mlp, tr_scale_mlp, tr_gate_mlp = token_replace_emb.chunk(
273
+ 6, dim=1
274
+ )
275
+
276
+ norm_hidden_states = self.norm(hidden_states)
277
+ hidden_states_zero = (
278
+ norm_hidden_states[:, :first_frame_num_tokens] * (1 + tr_scale_msa[:, None]) + tr_shift_msa[:, None]
279
+ )
280
+ hidden_states_orig = (
281
+ norm_hidden_states[:, first_frame_num_tokens:] * (1 + scale_msa[:, None]) + shift_msa[:, None]
282
+ )
283
+ hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
284
+
285
+ return (
286
+ hidden_states,
287
+ gate_msa,
288
+ shift_mlp,
289
+ scale_mlp,
290
+ gate_mlp,
291
+ tr_gate_msa,
292
+ tr_shift_mlp,
293
+ tr_scale_mlp,
294
+ tr_gate_mlp,
295
+ )
296
+
297
+
298
+ class HunyuanVideoTokenReplaceAdaLayerNormZeroSingle(nn.Module):
299
+ def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True):
300
+ super().__init__()
301
+
302
+ self.silu = nn.SiLU()
303
+ self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
304
+
305
+ if norm_type == "layer_norm":
306
+ self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
307
+ else:
308
+ raise ValueError(
309
+ f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
310
+ )
311
+
312
+ def forward(
313
+ self,
314
+ hidden_states: torch.Tensor,
315
+ emb: torch.Tensor,
316
+ token_replace_emb: torch.Tensor,
317
+ first_frame_num_tokens: int,
318
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
319
+ emb = self.linear(self.silu(emb))
320
+ token_replace_emb = self.linear(self.silu(token_replace_emb))
321
+
322
+ shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1)
323
+ tr_shift_msa, tr_scale_msa, tr_gate_msa = token_replace_emb.chunk(3, dim=1)
324
+
325
+ norm_hidden_states = self.norm(hidden_states)
326
+ hidden_states_zero = (
327
+ norm_hidden_states[:, :first_frame_num_tokens] * (1 + tr_scale_msa[:, None]) + tr_shift_msa[:, None]
328
+ )
329
+ hidden_states_orig = (
330
+ norm_hidden_states[:, first_frame_num_tokens:] * (1 + scale_msa[:, None]) + shift_msa[:, None]
331
+ )
332
+ hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
333
+
334
+ return hidden_states, gate_msa, tr_gate_msa
335
+
336
+
337
+ class HunyuanVideoConditionEmbedding(nn.Module):
338
+ def __init__(
339
+ self,
340
+ embedding_dim: int,
341
+ pooled_projection_dim: int,
342
+ guidance_embeds: bool,
343
+ image_condition_type: Optional[str] = None,
344
+ ):
345
+ super().__init__()
346
+
347
+ self.image_condition_type = image_condition_type
348
+
349
+ self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
350
+ self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
351
+ self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
352
+
353
+ self.guidance_embedder = None
354
+ if guidance_embeds:
355
+ self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
356
+
357
+ def forward(
358
+ self, timestep: torch.Tensor, pooled_projection: torch.Tensor, guidance: Optional[torch.Tensor] = None
359
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
360
+ timesteps_proj = self.time_proj(timestep)
361
+ timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
362
+ pooled_projections = self.text_embedder(pooled_projection)
363
+ conditioning = timesteps_emb + pooled_projections
364
+
365
+ token_replace_emb = None
366
+ if self.image_condition_type == "token_replace":
367
+ token_replace_timestep = torch.zeros_like(timestep)
368
+ token_replace_proj = self.time_proj(token_replace_timestep)
369
+ token_replace_emb = self.timestep_embedder(token_replace_proj.to(dtype=pooled_projection.dtype))
370
+ token_replace_emb = token_replace_emb + pooled_projections
371
+
372
+ if self.guidance_embedder is not None:
373
+ guidance_proj = self.time_proj(guidance)
374
+ guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
375
+ conditioning = conditioning + guidance_emb
376
+
377
+ return conditioning, token_replace_emb
378
+
379
+
380
+ class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
381
+ def __init__(
382
+ self,
383
+ num_attention_heads: int,
384
+ attention_head_dim: int,
385
+ mlp_width_ratio: str = 4.0,
386
+ mlp_drop_rate: float = 0.0,
387
+ attention_bias: bool = True,
388
+ ) -> None:
389
+ super().__init__()
390
+
391
+ hidden_size = num_attention_heads * attention_head_dim
392
+
393
+ self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
394
+ self.attn = Attention(
395
+ query_dim=hidden_size,
396
+ cross_attention_dim=None,
397
+ heads=num_attention_heads,
398
+ dim_head=attention_head_dim,
399
+ bias=attention_bias,
400
+ )
401
+
402
+ self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
403
+ self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
404
+
405
+ self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
406
+
407
+ def forward(
408
+ self,
409
+ hidden_states: torch.Tensor,
410
+ temb: torch.Tensor,
411
+ attention_mask: Optional[torch.Tensor] = None,
412
+ ) -> torch.Tensor:
413
+ norm_hidden_states = self.norm1(hidden_states)
414
+
415
+ attn_output = self.attn(
416
+ hidden_states=norm_hidden_states,
417
+ encoder_hidden_states=None,
418
+ attention_mask=attention_mask,
419
+ )
420
+
421
+ gate_msa, gate_mlp = self.norm_out(temb)
422
+ hidden_states = hidden_states + attn_output * gate_msa
423
+
424
+ ff_output = self.ff(self.norm2(hidden_states))
425
+ hidden_states = hidden_states + ff_output * gate_mlp
426
+
427
+ return hidden_states
428
+
429
+
430
+ class HunyuanVideoIndividualTokenRefiner(nn.Module):
431
+ def __init__(
432
+ self,
433
+ num_attention_heads: int,
434
+ attention_head_dim: int,
435
+ num_layers: int,
436
+ mlp_width_ratio: float = 4.0,
437
+ mlp_drop_rate: float = 0.0,
438
+ attention_bias: bool = True,
439
+ ) -> None:
440
+ super().__init__()
441
+
442
+ self.refiner_blocks = nn.ModuleList(
443
+ [
444
+ HunyuanVideoIndividualTokenRefinerBlock(
445
+ num_attention_heads=num_attention_heads,
446
+ attention_head_dim=attention_head_dim,
447
+ mlp_width_ratio=mlp_width_ratio,
448
+ mlp_drop_rate=mlp_drop_rate,
449
+ attention_bias=attention_bias,
450
+ )
451
+ for _ in range(num_layers)
452
+ ]
453
+ )
454
+
455
+ def forward(
456
+ self,
457
+ hidden_states: torch.Tensor,
458
+ temb: torch.Tensor,
459
+ attention_mask: Optional[torch.Tensor] = None,
460
+ ) -> None:
461
+ self_attn_mask = None
462
+ if attention_mask is not None:
463
+ batch_size = attention_mask.shape[0]
464
+ seq_len = attention_mask.shape[1]
465
+ attention_mask = attention_mask.to(hidden_states.device).bool()
466
+ self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
467
+ self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
468
+ self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
469
+ self_attn_mask[:, :, :, 0] = True
470
+
471
+ for block in self.refiner_blocks:
472
+ hidden_states = block(hidden_states, temb, self_attn_mask)
473
+
474
+ return hidden_states
475
+
476
+
477
+ class HunyuanVideoTokenRefiner(nn.Module):
478
+ def __init__(
479
+ self,
480
+ in_channels: int,
481
+ num_attention_heads: int,
482
+ attention_head_dim: int,
483
+ num_layers: int,
484
+ mlp_ratio: float = 4.0,
485
+ mlp_drop_rate: float = 0.0,
486
+ attention_bias: bool = True,
487
+ ) -> None:
488
+ super().__init__()
489
+
490
+ hidden_size = num_attention_heads * attention_head_dim
491
+
492
+ self.time_text_embed = CombinedTimestepTextProjEmbeddings(
493
+ embedding_dim=hidden_size, pooled_projection_dim=in_channels
494
+ )
495
+ self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
496
+ self.token_refiner = HunyuanVideoIndividualTokenRefiner(
497
+ num_attention_heads=num_attention_heads,
498
+ attention_head_dim=attention_head_dim,
499
+ num_layers=num_layers,
500
+ mlp_width_ratio=mlp_ratio,
501
+ mlp_drop_rate=mlp_drop_rate,
502
+ attention_bias=attention_bias,
503
+ )
504
+
505
+ def forward(
506
+ self,
507
+ hidden_states: torch.Tensor,
508
+ timestep: torch.LongTensor,
509
+ attention_mask: Optional[torch.LongTensor] = None,
510
+ ) -> torch.Tensor:
511
+ if attention_mask is None:
512
+ pooled_projections = hidden_states.mean(dim=1)
513
+ else:
514
+ original_dtype = hidden_states.dtype
515
+ mask_float = attention_mask.float().unsqueeze(-1)
516
+ pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
517
+ pooled_projections = pooled_projections.to(original_dtype)
518
+
519
+ temb = self.time_text_embed(timestep, pooled_projections)
520
+ hidden_states = self.proj_in(hidden_states)
521
+ hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
522
+
523
+ return hidden_states
524
+
525
+
526
+ class HunyuanVideoRotaryPosEmbed(nn.Module):
527
+ def __init__(self, patch_size: int, patch_size_t: int, rope_dim: List[int], theta: float = 256.0) -> None:
528
+ super().__init__()
529
+
530
+ self.patch_size = patch_size
531
+ self.patch_size_t = patch_size_t
532
+ self.rope_dim = rope_dim
533
+ self.theta = theta
534
+
535
+ def forward(self, hidden_states: torch.Tensor, frame_gap: Union[int, None] = None) -> torch.Tensor:
536
+ batch_size, num_channels, num_frames, height, width = hidden_states.shape
537
+ rope_sizes = [num_frames // self.patch_size_t, height // self.patch_size, width // self.patch_size]
538
+
539
+ axes_grids = []
540
+ for i in range(3):
541
+ # Note: The following line diverges from original behaviour. We create the grid on the device, whereas
542
+ # original implementation creates it on CPU and then moves it to device. This results in numerical
543
+ # differences in layerwise debugging outputs, but visually it is the same.
544
+ grid = torch.arange(0, rope_sizes[i], device=hidden_states.device, dtype=torch.float32)
545
+ if frame_gap is not None and i == 0:
546
+ grid = grid * frame_gap
547
+ axes_grids.append(grid)
548
+ grid = torch.meshgrid(*axes_grids, indexing="ij") # [W, H, T]
549
+ grid = torch.stack(grid, dim=0) # [3, W, H, T]
550
+
551
+ freqs = []
552
+ for i in range(3):
553
+ freq = get_1d_rotary_pos_embed(self.rope_dim[i], grid[i].reshape(-1), self.theta, use_real=True)
554
+ freqs.append(freq)
555
+
556
+ freqs_cos = torch.cat([f[0] for f in freqs], dim=1) # (W * H * T, D / 2)
557
+ freqs_sin = torch.cat([f[1] for f in freqs], dim=1) # (W * H * T, D / 2)
558
+ return freqs_cos, freqs_sin
559
+
560
+
561
+ class HunyuanVideoSingleTransformerBlock(nn.Module):
562
+ def __init__(
563
+ self,
564
+ num_attention_heads: int,
565
+ attention_head_dim: int,
566
+ mlp_ratio: float = 4.0,
567
+ qk_norm: str = "rms_norm",
568
+ inference_subject_driven: bool = False,
569
+ ) -> None:
570
+ super().__init__()
571
+
572
+ hidden_size = num_attention_heads * attention_head_dim
573
+ mlp_dim = int(hidden_size * mlp_ratio)
574
+
575
+ self.attn = Attention(
576
+ query_dim=hidden_size,
577
+ cross_attention_dim=None,
578
+ dim_head=attention_head_dim,
579
+ heads=num_attention_heads,
580
+ out_dim=hidden_size,
581
+ bias=True,
582
+ processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven),
583
+ qk_norm=qk_norm,
584
+ eps=1e-6,
585
+ pre_only=True,
586
+ )
587
+
588
+ self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
589
+ self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
590
+ self.act_mlp = nn.GELU(approximate="tanh")
591
+ self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
592
+
593
+ def forward(
594
+ self,
595
+ hidden_states: torch.Tensor,
596
+ encoder_hidden_states: torch.Tensor,
597
+ temb: torch.Tensor,
598
+ attention_mask: Optional[torch.Tensor] = None,
599
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
600
+ *args,
601
+ **kwargs,
602
+ ) -> torch.Tensor:
603
+ text_seq_length = encoder_hidden_states.shape[1]
604
+ hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
605
+
606
+ residual = hidden_states
607
+
608
+ # 1. Input normalization
609
+ norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
610
+ mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
611
+
612
+ norm_hidden_states, norm_encoder_hidden_states = (
613
+ norm_hidden_states[:, :-text_seq_length, :],
614
+ norm_hidden_states[:, -text_seq_length:, :],
615
+ )
616
+
617
+ # 2. Attention
618
+ attn_output, context_attn_output = self.attn(
619
+ hidden_states=norm_hidden_states,
620
+ encoder_hidden_states=norm_encoder_hidden_states,
621
+ attention_mask=attention_mask,
622
+ image_rotary_emb=image_rotary_emb,
623
+ )
624
+ attn_output = torch.cat([attn_output, context_attn_output], dim=1)
625
+
626
+ # 3. Modulation and residual connection
627
+ hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
628
+ hidden_states = gate.unsqueeze(1) * self.proj_out(hidden_states)
629
+ hidden_states = hidden_states + residual
630
+
631
+ hidden_states, encoder_hidden_states = (
632
+ hidden_states[:, :-text_seq_length, :],
633
+ hidden_states[:, -text_seq_length:, :],
634
+ )
635
+ return hidden_states, encoder_hidden_states
636
+
637
+
638
+ class HunyuanVideoTransformerBlock(nn.Module):
639
+ def __init__(
640
+ self,
641
+ num_attention_heads: int,
642
+ attention_head_dim: int,
643
+ mlp_ratio: float,
644
+ qk_norm: str = "rms_norm",
645
+ inference_subject_driven: bool = False,
646
+ ) -> None:
647
+ super().__init__()
648
+
649
+ hidden_size = num_attention_heads * attention_head_dim
650
+
651
+ self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
652
+ self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
653
+
654
+ self.attn = Attention(
655
+ query_dim=hidden_size,
656
+ cross_attention_dim=None,
657
+ added_kv_proj_dim=hidden_size,
658
+ dim_head=attention_head_dim,
659
+ heads=num_attention_heads,
660
+ out_dim=hidden_size,
661
+ context_pre_only=False,
662
+ bias=True,
663
+ processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven),
664
+ qk_norm=qk_norm,
665
+ eps=1e-6,
666
+ )
667
+
668
+ self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
669
+ self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
670
+
671
+ self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
672
+ self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
673
+
674
+ def forward(
675
+ self,
676
+ hidden_states: torch.Tensor,
677
+ encoder_hidden_states: torch.Tensor,
678
+ temb: torch.Tensor,
679
+ attention_mask: Optional[torch.Tensor] = None,
680
+ freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
681
+ *args,
682
+ **kwargs,
683
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
684
+ # 1. Input normalization
685
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
686
+ norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
687
+ encoder_hidden_states, emb=temb
688
+ )
689
+
690
+ # 2. Joint attention
691
+ attn_output, context_attn_output = self.attn(
692
+ hidden_states=norm_hidden_states,
693
+ encoder_hidden_states=norm_encoder_hidden_states,
694
+ attention_mask=attention_mask,
695
+ image_rotary_emb=freqs_cis,
696
+ )
697
+
698
+ # 3. Modulation and residual connection
699
+ hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1)
700
+ encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1)
701
+
702
+ norm_hidden_states = self.norm2(hidden_states)
703
+ norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
704
+
705
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
706
+ norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
707
+
708
+ # 4. Feed-forward
709
+ ff_output = self.ff(norm_hidden_states)
710
+ context_ff_output = self.ff_context(norm_encoder_hidden_states)
711
+
712
+ hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output
713
+ encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
714
+
715
+ return hidden_states, encoder_hidden_states
716
+
717
+
718
+ class HunyuanVideoTokenReplaceSingleTransformerBlock(nn.Module):
719
+ def __init__(
720
+ self,
721
+ num_attention_heads: int,
722
+ attention_head_dim: int,
723
+ mlp_ratio: float = 4.0,
724
+ qk_norm: str = "rms_norm",
725
+ inference_subject_driven: bool = False,
726
+ ) -> None:
727
+ super().__init__()
728
+
729
+ hidden_size = num_attention_heads * attention_head_dim
730
+ mlp_dim = int(hidden_size * mlp_ratio)
731
+
732
+ self.attn = Attention(
733
+ query_dim=hidden_size,
734
+ cross_attention_dim=None,
735
+ dim_head=attention_head_dim,
736
+ heads=num_attention_heads,
737
+ out_dim=hidden_size,
738
+ bias=True,
739
+ processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven),
740
+ qk_norm=qk_norm,
741
+ eps=1e-6,
742
+ pre_only=True,
743
+ )
744
+
745
+ self.norm = HunyuanVideoTokenReplaceAdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
746
+ self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
747
+ self.act_mlp = nn.GELU(approximate="tanh")
748
+ self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
749
+
750
+ def forward(
751
+ self,
752
+ hidden_states: torch.Tensor,
753
+ encoder_hidden_states: torch.Tensor,
754
+ temb: torch.Tensor,
755
+ attention_mask: Optional[torch.Tensor] = None,
756
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
757
+ token_replace_emb: torch.Tensor = None,
758
+ num_tokens: int = None,
759
+ ) -> torch.Tensor:
760
+ text_seq_length = encoder_hidden_states.shape[1]
761
+ hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
762
+
763
+ residual = hidden_states
764
+
765
+ # 1. Input normalization
766
+ norm_hidden_states, gate, tr_gate = self.norm(hidden_states, temb, token_replace_emb, num_tokens)
767
+ mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
768
+
769
+ norm_hidden_states, norm_encoder_hidden_states = (
770
+ norm_hidden_states[:, :-text_seq_length, :],
771
+ norm_hidden_states[:, -text_seq_length:, :],
772
+ )
773
+
774
+ # 2. Attention
775
+ attn_output, context_attn_output = self.attn(
776
+ hidden_states=norm_hidden_states,
777
+ encoder_hidden_states=norm_encoder_hidden_states,
778
+ attention_mask=attention_mask,
779
+ image_rotary_emb=image_rotary_emb,
780
+ )
781
+ attn_output = torch.cat([attn_output, context_attn_output], dim=1)
782
+
783
+ # 3. Modulation and residual connection
784
+ hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
785
+
786
+ proj_output = self.proj_out(hidden_states)
787
+ hidden_states_zero = proj_output[:, :num_tokens] * tr_gate.unsqueeze(1)
788
+ hidden_states_orig = proj_output[:, num_tokens:] * gate.unsqueeze(1)
789
+ hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
790
+ hidden_states = hidden_states + residual
791
+
792
+ hidden_states, encoder_hidden_states = (
793
+ hidden_states[:, :-text_seq_length, :],
794
+ hidden_states[:, -text_seq_length:, :],
795
+ )
796
+ return hidden_states, encoder_hidden_states
797
+
798
+
799
+ class HunyuanVideoTokenReplaceTransformerBlock(nn.Module):
800
+ def __init__(
801
+ self,
802
+ num_attention_heads: int,
803
+ attention_head_dim: int,
804
+ mlp_ratio: float,
805
+ qk_norm: str = "rms_norm",
806
+ inference_subject_driven: bool = False,
807
+ ) -> None:
808
+ super().__init__()
809
+
810
+ hidden_size = num_attention_heads * attention_head_dim
811
+
812
+ self.norm1 = HunyuanVideoTokenReplaceAdaLayerNormZero(hidden_size, norm_type="layer_norm")
813
+ self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
814
+
815
+ self.attn = Attention(
816
+ query_dim=hidden_size,
817
+ cross_attention_dim=None,
818
+ added_kv_proj_dim=hidden_size,
819
+ dim_head=attention_head_dim,
820
+ heads=num_attention_heads,
821
+ out_dim=hidden_size,
822
+ context_pre_only=False,
823
+ bias=True,
824
+ processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven),
825
+ qk_norm=qk_norm,
826
+ eps=1e-6,
827
+ )
828
+
829
+ self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
830
+ self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
831
+
832
+ self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
833
+ self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
834
+
835
+ def forward(
836
+ self,
837
+ hidden_states: torch.Tensor,
838
+ encoder_hidden_states: torch.Tensor,
839
+ temb: torch.Tensor,
840
+ attention_mask: Optional[torch.Tensor] = None,
841
+ freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
842
+ token_replace_emb: torch.Tensor = None,
843
+ num_tokens: int = None,
844
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
845
+ # 1. Input normalization
846
+ (
847
+ norm_hidden_states,
848
+ gate_msa,
849
+ shift_mlp,
850
+ scale_mlp,
851
+ gate_mlp,
852
+ tr_gate_msa,
853
+ tr_shift_mlp,
854
+ tr_scale_mlp,
855
+ tr_gate_mlp,
856
+ ) = self.norm1(hidden_states, temb, token_replace_emb, num_tokens)
857
+ norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
858
+ encoder_hidden_states, emb=temb
859
+ )
860
+
861
+ # 2. Joint attention
862
+ attn_output, context_attn_output = self.attn(
863
+ hidden_states=norm_hidden_states,
864
+ encoder_hidden_states=norm_encoder_hidden_states,
865
+ attention_mask=attention_mask,
866
+ image_rotary_emb=freqs_cis,
867
+ )
868
+
869
+ # 3. Modulation and residual connection
870
+ hidden_states_zero = hidden_states[:, :num_tokens] + attn_output[:, :num_tokens] * tr_gate_msa.unsqueeze(1)
871
+ hidden_states_orig = hidden_states[:, num_tokens:] + attn_output[:, num_tokens:] * gate_msa.unsqueeze(1)
872
+ hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
873
+ encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1)
874
+
875
+ norm_hidden_states = self.norm2(hidden_states)
876
+ norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
877
+
878
+ hidden_states_zero = norm_hidden_states[:, :num_tokens] * (1 + tr_scale_mlp[:, None]) + tr_shift_mlp[:, None]
879
+ hidden_states_orig = norm_hidden_states[:, num_tokens:] * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
880
+ norm_hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
881
+ norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
882
+
883
+ # 4. Feed-forward
884
+ ff_output = self.ff(norm_hidden_states)
885
+ context_ff_output = self.ff_context(norm_encoder_hidden_states)
886
+
887
+ hidden_states_zero = hidden_states[:, :num_tokens] + ff_output[:, :num_tokens] * tr_gate_mlp.unsqueeze(1)
888
+ hidden_states_orig = hidden_states[:, num_tokens:] + ff_output[:, num_tokens:] * gate_mlp.unsqueeze(1)
889
+ hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
890
+ encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
891
+
892
+ return hidden_states, encoder_hidden_states
893
+
894
+
895
+ class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
896
+ r"""
897
+ A Transformer model for video-like data used in [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo).
898
+
899
+ Args:
900
+ in_channels (`int`, defaults to `16`):
901
+ The number of channels in the input.
902
+ out_channels (`int`, defaults to `16`):
903
+ The number of channels in the output.
904
+ num_attention_heads (`int`, defaults to `24`):
905
+ The number of heads to use for multi-head attention.
906
+ attention_head_dim (`int`, defaults to `128`):
907
+ The number of channels in each head.
908
+ num_layers (`int`, defaults to `20`):
909
+ The number of layers of dual-stream blocks to use.
910
+ num_single_layers (`int`, defaults to `40`):
911
+ The number of layers of single-stream blocks to use.
912
+ num_refiner_layers (`int`, defaults to `2`):
913
+ The number of layers of refiner blocks to use.
914
+ mlp_ratio (`float`, defaults to `4.0`):
915
+ The ratio of the hidden layer size to the input size in the feedforward network.
916
+ patch_size (`int`, defaults to `2`):
917
+ The size of the spatial patches to use in the patch embedding layer.
918
+ patch_size_t (`int`, defaults to `1`):
919
+ The size of the tmeporal patches to use in the patch embedding layer.
920
+ qk_norm (`str`, defaults to `rms_norm`):
921
+ The normalization to use for the query and key projections in the attention layers.
922
+ guidance_embeds (`bool`, defaults to `True`):
923
+ Whether to use guidance embeddings in the model.
924
+ text_embed_dim (`int`, defaults to `4096`):
925
+ Input dimension of text embeddings from the text encoder.
926
+ pooled_projection_dim (`int`, defaults to `768`):
927
+ The dimension of the pooled projection of the text embeddings.
928
+ rope_theta (`float`, defaults to `256.0`):
929
+ The value of theta to use in the RoPE layer.
930
+ rope_axes_dim (`Tuple[int]`, defaults to `(16, 56, 56)`):
931
+ The dimensions of the axes to use in the RoPE layer.
932
+ image_condition_type (`str`, *optional*, defaults to `None`):
933
+ The type of image conditioning to use. If `None`, no image conditioning is used. If `latent_concat`, the
934
+ image is concatenated to the latent stream. If `token_replace`, the image is used to replace first-frame
935
+ tokens in the latent stream and apply conditioning.
936
+ """
937
+
938
+ _supports_gradient_checkpointing = True
939
+ _skip_layerwise_casting_patterns = ["x_embedder", "context_embedder", "norm"]
940
+ _no_split_modules = [
941
+ "HunyuanVideoTransformerBlock",
942
+ "HunyuanVideoSingleTransformerBlock",
943
+ "HunyuanVideoPatchEmbed",
944
+ "HunyuanVideoTokenRefiner",
945
+ ]
946
+
947
+ @register_to_config
948
+ def __init__(
949
+ self,
950
+ in_channels: int = 16,
951
+ out_channels: int = 16,
952
+ num_attention_heads: int = 24,
953
+ attention_head_dim: int = 128,
954
+ num_layers: int = 20,
955
+ num_single_layers: int = 40,
956
+ num_refiner_layers: int = 2,
957
+ mlp_ratio: float = 4.0,
958
+ patch_size: int = 2,
959
+ patch_size_t: int = 1,
960
+ qk_norm: str = "rms_norm",
961
+ guidance_embeds: bool = True,
962
+ text_embed_dim: int = 4096,
963
+ pooled_projection_dim: int = 768,
964
+ rope_theta: float = 256.0,
965
+ rope_axes_dim: Tuple[int] = (16, 56, 56),
966
+ image_condition_type: Optional[str] = None,
967
+ inference_subject_driven: bool = False,
968
+ ) -> None:
969
+ super().__init__()
970
+
971
+ supported_image_condition_types = ["latent_concat", "token_replace"]
972
+ if image_condition_type is not None and image_condition_type not in supported_image_condition_types:
973
+ raise ValueError(
974
+ f"Invalid `image_condition_type` ({image_condition_type}). Supported ones are: {supported_image_condition_types}"
975
+ )
976
+
977
+ inner_dim = num_attention_heads * attention_head_dim
978
+ out_channels = out_channels or in_channels
979
+
980
+ # 1. Latent and condition embedders
981
+ self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
982
+ self.context_embedder = HunyuanVideoTokenRefiner(
983
+ text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
984
+ )
985
+
986
+ self.time_text_embed = HunyuanVideoConditionEmbedding(
987
+ inner_dim, pooled_projection_dim, guidance_embeds, image_condition_type
988
+ )
989
+
990
+ # 2. RoPE
991
+ self.rope = HunyuanVideoRotaryPosEmbed(patch_size, patch_size_t, rope_axes_dim, rope_theta)
992
+
993
+ # 3. Dual stream transformer blocks
994
+ if image_condition_type == "token_replace":
995
+ self.transformer_blocks = nn.ModuleList(
996
+ [
997
+ HunyuanVideoTokenReplaceTransformerBlock(
998
+ num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven
999
+ )
1000
+ for _ in range(num_layers)
1001
+ ]
1002
+ )
1003
+ else:
1004
+ self.transformer_blocks = nn.ModuleList(
1005
+ [
1006
+ HunyuanVideoTransformerBlock(
1007
+ num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven
1008
+ )
1009
+ for _ in range(num_layers)
1010
+ ]
1011
+ )
1012
+
1013
+ # 4. Single stream transformer blocks
1014
+ if image_condition_type == "token_replace":
1015
+ self.single_transformer_blocks = nn.ModuleList(
1016
+ [
1017
+ HunyuanVideoTokenReplaceSingleTransformerBlock(
1018
+ num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven
1019
+ )
1020
+ for _ in range(num_single_layers)
1021
+ ]
1022
+ )
1023
+ else:
1024
+ self.single_transformer_blocks = nn.ModuleList(
1025
+ [
1026
+ HunyuanVideoSingleTransformerBlock(
1027
+ num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven
1028
+ )
1029
+ for _ in range(num_single_layers)
1030
+ ]
1031
+ )
1032
+
1033
+ # 5. Output projection
1034
+ self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
1035
+ self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
1036
+
1037
+ self.gradient_checkpointing = False
1038
+
1039
+ @property
1040
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
1041
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
1042
+ r"""
1043
+ Returns:
1044
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
1045
+ indexed by its weight name.
1046
+ """
1047
+ # set recursively
1048
+ processors = {}
1049
+
1050
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
1051
+ if hasattr(module, "get_processor"):
1052
+ processors[f"{name}.processor"] = module.get_processor()
1053
+
1054
+ for sub_name, child in module.named_children():
1055
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
1056
+
1057
+ return processors
1058
+
1059
+ for name, module in self.named_children():
1060
+ fn_recursive_add_processors(name, module, processors)
1061
+
1062
+ return processors
1063
+
1064
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
1065
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
1066
+ r"""
1067
+ Sets the attention processor to use to compute attention.
1068
+
1069
+ Parameters:
1070
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
1071
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
1072
+ for **all** `Attention` layers.
1073
+
1074
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
1075
+ processor. This is strongly recommended when setting trainable attention processors.
1076
+
1077
+ """
1078
+ count = len(self.attn_processors.keys())
1079
+
1080
+ if isinstance(processor, dict) and len(processor) != count:
1081
+ raise ValueError(
1082
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
1083
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
1084
+ )
1085
+
1086
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
1087
+ if hasattr(module, "set_processor"):
1088
+ if not isinstance(processor, dict):
1089
+ module.set_processor(processor)
1090
+ else:
1091
+ module.set_processor(processor.pop(f"{name}.processor"))
1092
+
1093
+ for sub_name, child in module.named_children():
1094
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
1095
+
1096
+ for name, module in self.named_children():
1097
+ fn_recursive_attn_processor(name, module, processor)
1098
+
1099
+ def forward(
1100
+ self,
1101
+ hidden_states: torch.Tensor,
1102
+ timestep: torch.LongTensor,
1103
+ encoder_hidden_states: torch.Tensor,
1104
+ encoder_attention_mask: torch.Tensor,
1105
+ pooled_projections: torch.Tensor,
1106
+ encoder_hidden_states_condition: Union[torch.Tensor, None] = None,
1107
+ encoder_attention_mask_condition: Union[torch.Tensor, None] = None,
1108
+ guidance: torch.Tensor = None,
1109
+ attention_kwargs: Optional[Dict[str, Any]] = None,
1110
+ return_dict: bool = True,
1111
+ frame_gap: Union[int, None] = None,
1112
+ ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
1113
+ if attention_kwargs is not None:
1114
+ attention_kwargs = attention_kwargs.copy()
1115
+ lora_scale = attention_kwargs.pop("scale", 1.0)
1116
+ else:
1117
+ lora_scale = 1.0
1118
+
1119
+ if USE_PEFT_BACKEND:
1120
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
1121
+ scale_lora_layers(self, lora_scale)
1122
+ else:
1123
+ if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
1124
+ logger.warning(
1125
+ "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
1126
+ )
1127
+
1128
+ batch_size, num_channels, num_frames, height, width = hidden_states.shape
1129
+ p, p_t = self.config.patch_size, self.config.patch_size_t
1130
+ post_patch_num_frames = num_frames // p_t
1131
+ post_patch_height = height // p
1132
+ post_patch_width = width // p
1133
+ first_frame_num_tokens = 1 * post_patch_height * post_patch_width
1134
+
1135
+ # 1. RoPE
1136
+ image_rotary_emb = self.rope(hidden_states, frame_gap=frame_gap)
1137
+
1138
+ # 2. Conditional embeddings
1139
+ temb, token_replace_emb = self.time_text_embed(timestep, pooled_projections, guidance)
1140
+
1141
+ hidden_states = self.x_embedder(hidden_states)
1142
+ encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask)
1143
+ if encoder_hidden_states_condition is not None and encoder_attention_mask_condition is not None:
1144
+ encoder_hidden_states_condition = self.context_embedder(
1145
+ encoder_hidden_states_condition,
1146
+ torch.zeros_like(timestep),
1147
+ encoder_attention_mask_condition,
1148
+ )
1149
+ encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_condition], dim=1)
1150
+ encoder_attention_mask = torch.cat([encoder_attention_mask, encoder_attention_mask_condition], dim=1)
1151
+
1152
+ # 3. Attention mask preparation
1153
+ latent_sequence_length = hidden_states.shape[1]
1154
+ condition_sequence_length = encoder_hidden_states.shape[1]
1155
+ sequence_length = latent_sequence_length + condition_sequence_length
1156
+ attention_mask = torch.zeros(
1157
+ batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool
1158
+ ) # [B, N]
1159
+
1160
+ effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int) # [B,]
1161
+ effective_sequence_length = latent_sequence_length + effective_condition_sequence_length
1162
+
1163
+ for i in range(batch_size):
1164
+ if encoder_attention_mask_condition is not None and encoder_attention_mask_condition is not None:
1165
+ attention_mask[i, : latent_sequence_length] = True
1166
+ attention_mask[i, latent_sequence_length :][encoder_attention_mask[i] == 1.] = True
1167
+ else:
1168
+ attention_mask[i, : effective_sequence_length[i]] = True
1169
+ # [B, 1, 1, N], for broadcasting across attention heads
1170
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)
1171
+
1172
+ # 4. Transformer blocks
1173
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
1174
+ for block in self.transformer_blocks:
1175
+ hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
1176
+ block,
1177
+ hidden_states,
1178
+ encoder_hidden_states,
1179
+ temb,
1180
+ attention_mask,
1181
+ image_rotary_emb,
1182
+ token_replace_emb,
1183
+ first_frame_num_tokens,
1184
+ )
1185
+
1186
+ for block in self.single_transformer_blocks:
1187
+ hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
1188
+ block,
1189
+ hidden_states,
1190
+ encoder_hidden_states,
1191
+ temb,
1192
+ attention_mask,
1193
+ image_rotary_emb,
1194
+ token_replace_emb,
1195
+ first_frame_num_tokens,
1196
+ )
1197
+
1198
+ else:
1199
+ for block in self.transformer_blocks:
1200
+ hidden_states, encoder_hidden_states = block(
1201
+ hidden_states,
1202
+ encoder_hidden_states,
1203
+ temb,
1204
+ attention_mask,
1205
+ image_rotary_emb,
1206
+ token_replace_emb,
1207
+ first_frame_num_tokens,
1208
+ )
1209
+
1210
+ for block in self.single_transformer_blocks:
1211
+ hidden_states, encoder_hidden_states = block(
1212
+ hidden_states,
1213
+ encoder_hidden_states,
1214
+ temb,
1215
+ attention_mask,
1216
+ image_rotary_emb,
1217
+ token_replace_emb,
1218
+ first_frame_num_tokens,
1219
+ )
1220
+
1221
+ # 5. Output projection
1222
+ hidden_states = self.norm_out(hidden_states, temb)
1223
+ hidden_states = self.proj_out(hidden_states)
1224
+
1225
+ hidden_states = hidden_states.reshape(
1226
+ batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p
1227
+ )
1228
+ hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7)
1229
+ hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
1230
+
1231
+ if USE_PEFT_BACKEND:
1232
+ # remove `lora_scale` from each PEFT layer
1233
+ unscale_lora_layers(self, lora_scale)
1234
+
1235
+ if not return_dict:
1236
+ return (hidden_states,)
1237
+
1238
+ return Transformer2DModelOutput(sample=hidden_states)
pipelines/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .pipeline_hunyuan_video_i2v import HunyuanVideoImageToVideoPipeline
pipelines/pipeline_hunyuan_video_i2v.py ADDED
@@ -0,0 +1,969 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HunyuanVideo Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # Modified by [Hengyuan Cao] in 2025.
15
+
16
+ import inspect
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+ import PIL.Image
21
+ import torch
22
+ from transformers import (
23
+ CLIPImageProcessor,
24
+ CLIPTextModel,
25
+ CLIPTokenizer,
26
+ LlamaTokenizerFast,
27
+ LlavaForConditionalGeneration,
28
+ )
29
+
30
+ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
31
+ from diffusers.loaders import HunyuanVideoLoraLoaderMixin
32
+ from diffusers.models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel
33
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
34
+ from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
35
+ from diffusers.utils.torch_utils import randn_tensor
36
+ from diffusers.video_processor import VideoProcessor
37
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
38
+ from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput
39
+
40
+
41
+ if is_torch_xla_available():
42
+ import torch_xla.core.xla_model as xm
43
+
44
+ XLA_AVAILABLE = True
45
+ else:
46
+ XLA_AVAILABLE = False
47
+
48
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
49
+
50
+
51
+ EXAMPLE_DOC_STRING = """
52
+ Examples:
53
+ ```python
54
+ >>> import torch
55
+ >>> from diffusers import HunyuanVideoImageToVideoPipeline, HunyuanVideoTransformer3DModel
56
+ >>> from diffusers.utils import load_image, export_to_video
57
+
58
+ >>> # Available checkpoints: hunyuanvideo-community/HunyuanVideo-I2V, hunyuanvideo-community/HunyuanVideo-I2V-33ch
59
+ >>> model_id = "hunyuanvideo-community/HunyuanVideo-I2V"
60
+ >>> transformer = HunyuanVideoTransformer3DModel.from_pretrained(
61
+ ... model_id, subfolder="transformer", torch_dtype=torch.bfloat16
62
+ ... )
63
+ >>> pipe = HunyuanVideoImageToVideoPipeline.from_pretrained(
64
+ ... model_id, transformer=transformer, torch_dtype=torch.float16
65
+ ... )
66
+ >>> pipe.vae.enable_tiling()
67
+ >>> pipe.to("cuda")
68
+
69
+ >>> prompt = "A man with short gray hair plays a red electric guitar."
70
+ >>> image = load_image(
71
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/guitar-man.png"
72
+ ... )
73
+
74
+ >>> # If using hunyuanvideo-community/HunyuanVideo-I2V
75
+ >>> output = pipe(image=image, prompt=prompt, guidance_scale=6.0).frames[0]
76
+
77
+ >>> # If using hunyuanvideo-community/HunyuanVideo-I2V-33ch
78
+ >>> output = pipe(image=image, prompt=prompt, guidance_scale=1.0, true_cfg_scale=1.0).frames[0]
79
+
80
+ >>> export_to_video(output, "output.mp4", fps=15)
81
+ ```
82
+ """
83
+
84
+
85
+ DEFAULT_PROMPT_TEMPLATE = {
86
+ "template": (
87
+ "<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the video by detailing the following aspects according to the reference image: "
88
+ "1. The main content and theme of the video."
89
+ "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
90
+ "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
91
+ "4. background environment, light, style and atmosphere."
92
+ "5. camera angles, movements, and transitions used in the video:<|eot_id|>\n\n"
93
+ "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
94
+ "<|start_header_id|>assistant<|end_header_id|>\n\n"
95
+ ),
96
+ "crop_start": 103,
97
+ "image_emb_start": 5,
98
+ "image_emb_end": 581,
99
+ "image_emb_len": 576,
100
+ "double_return_token_id": 271,
101
+ }
102
+
103
+
104
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
105
+ def retrieve_timesteps(
106
+ scheduler,
107
+ num_inference_steps: Optional[int] = None,
108
+ device: Optional[Union[str, torch.device]] = None,
109
+ timesteps: Optional[List[int]] = None,
110
+ sigmas: Optional[List[float]] = None,
111
+ **kwargs,
112
+ ):
113
+ r"""
114
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
115
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
116
+
117
+ Args:
118
+ scheduler (`SchedulerMixin`):
119
+ The scheduler to get timesteps from.
120
+ num_inference_steps (`int`):
121
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
122
+ must be `None`.
123
+ device (`str` or `torch.device`, *optional*):
124
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
125
+ timesteps (`List[int]`, *optional*):
126
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
127
+ `num_inference_steps` and `sigmas` must be `None`.
128
+ sigmas (`List[float]`, *optional*):
129
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
130
+ `num_inference_steps` and `timesteps` must be `None`.
131
+
132
+ Returns:
133
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
134
+ second element is the number of inference steps.
135
+ """
136
+ if timesteps is not None and sigmas is not None:
137
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
138
+ if timesteps is not None:
139
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
140
+ if not accepts_timesteps:
141
+ raise ValueError(
142
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
143
+ f" timestep schedules. Please check whether you are using the correct scheduler."
144
+ )
145
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
146
+ timesteps = scheduler.timesteps
147
+ num_inference_steps = len(timesteps)
148
+ elif sigmas is not None:
149
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
150
+ if not accept_sigmas:
151
+ raise ValueError(
152
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
153
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
154
+ )
155
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
156
+ timesteps = scheduler.timesteps
157
+ num_inference_steps = len(timesteps)
158
+ else:
159
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
160
+ timesteps = scheduler.timesteps
161
+ return timesteps, num_inference_steps
162
+
163
+
164
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
165
+ def retrieve_latents(
166
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
167
+ ):
168
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
169
+ return encoder_output.latent_dist.sample(generator)
170
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
171
+ return encoder_output.latent_dist.mode()
172
+ elif hasattr(encoder_output, "latents"):
173
+ return encoder_output.latents
174
+ else:
175
+ raise AttributeError("Could not access latents of provided encoder_output")
176
+
177
+
178
+ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoaderMixin):
179
+ r"""
180
+ Pipeline for image-to-video generation using HunyuanVideo.
181
+
182
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
183
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
184
+
185
+ Args:
186
+ text_encoder ([`LlavaForConditionalGeneration`]):
187
+ [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers).
188
+ tokenizer (`LlamaTokenizer`):
189
+ Tokenizer from [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers).
190
+ transformer ([`HunyuanVideoTransformer3DModel`]):
191
+ Conditional Transformer to denoise the encoded image latents.
192
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
193
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
194
+ vae ([`AutoencoderKLHunyuanVideo`]):
195
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
196
+ text_encoder_2 ([`CLIPTextModel`]):
197
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
198
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
199
+ tokenizer_2 (`CLIPTokenizer`):
200
+ Tokenizer of class
201
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
202
+ """
203
+
204
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
205
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
206
+
207
+ def __init__(
208
+ self,
209
+ text_encoder: LlavaForConditionalGeneration,
210
+ tokenizer: LlamaTokenizerFast,
211
+ transformer: HunyuanVideoTransformer3DModel,
212
+ vae: AutoencoderKLHunyuanVideo,
213
+ scheduler: FlowMatchEulerDiscreteScheduler,
214
+ text_encoder_2: CLIPTextModel,
215
+ tokenizer_2: CLIPTokenizer,
216
+ image_processor: CLIPImageProcessor,
217
+ ):
218
+ super().__init__()
219
+
220
+ self.register_modules(
221
+ vae=vae,
222
+ text_encoder=text_encoder,
223
+ tokenizer=tokenizer,
224
+ transformer=transformer,
225
+ scheduler=scheduler,
226
+ text_encoder_2=text_encoder_2,
227
+ tokenizer_2=tokenizer_2,
228
+ image_processor=image_processor,
229
+ )
230
+
231
+ self.vae_scaling_factor = self.vae.config.scaling_factor if getattr(self, "vae", None) else 0.476986
232
+ self.vae_scale_factor_temporal = self.vae.temporal_compression_ratio if getattr(self, "vae", None) else 4
233
+ self.vae_scale_factor_spatial = self.vae.spatial_compression_ratio if getattr(self, "vae", None) else 8
234
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
235
+
236
+ def _get_llama_prompt_embeds(
237
+ self,
238
+ image: torch.Tensor,
239
+ prompt: Union[str, List[str]],
240
+ prompt_template: Dict[str, Any],
241
+ num_videos_per_prompt: int = 1,
242
+ device: Optional[torch.device] = None,
243
+ dtype: Optional[torch.dtype] = None,
244
+ max_sequence_length: int = 256,
245
+ num_hidden_layers_to_skip: int = 2,
246
+ image_embed_interleave: int = 2,
247
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
248
+ device = device or self._execution_device
249
+ dtype = dtype or self.text_encoder.dtype
250
+
251
+ prompt = [prompt] if isinstance(prompt, str) else prompt
252
+ prompt = [prompt_template["template"].format(p) for p in prompt]
253
+
254
+ crop_start = prompt_template.get("crop_start", None)
255
+ if crop_start is None:
256
+ prompt_template_input = self.tokenizer(
257
+ prompt_template["template"],
258
+ padding="max_length",
259
+ return_tensors="pt",
260
+ return_length=False,
261
+ return_overflowing_tokens=False,
262
+ return_attention_mask=False,
263
+ )
264
+ crop_start = prompt_template_input["input_ids"].shape[-1]
265
+ # Remove <|start_header_id|>, <|end_header_id|>, assistant, <|eot_id|>, and placeholder {}
266
+ crop_start -= 5
267
+
268
+ max_sequence_length += crop_start
269
+ text_inputs = self.tokenizer(
270
+ prompt,
271
+ max_length=max_sequence_length,
272
+ padding="max_length",
273
+ truncation=True,
274
+ return_tensors="pt",
275
+ return_length=False,
276
+ return_overflowing_tokens=False,
277
+ return_attention_mask=True,
278
+ )
279
+ text_input_ids = text_inputs.input_ids.to(device=device)
280
+ prompt_attention_mask = text_inputs.attention_mask.to(device=device)
281
+
282
+ image_embeds = self.image_processor(image, return_tensors="pt").pixel_values.to(device)
283
+
284
+ prompt_embeds = self.text_encoder(
285
+ input_ids=text_input_ids,
286
+ attention_mask=prompt_attention_mask,
287
+ pixel_values=image_embeds,
288
+ output_hidden_states=True,
289
+ ).hidden_states[-(num_hidden_layers_to_skip + 1)]
290
+ prompt_embeds = prompt_embeds.to(dtype=dtype)
291
+
292
+ image_emb_len = prompt_template.get("image_emb_len", 576)
293
+ image_emb_start = prompt_template.get("image_emb_start", 5)
294
+ image_emb_end = prompt_template.get("image_emb_end", 581)
295
+ double_return_token_id = prompt_template.get("double_return_token_id", 271)
296
+
297
+ if crop_start is not None and crop_start > 0:
298
+ text_crop_start = crop_start - 1 + image_emb_len
299
+ batch_indices, last_double_return_token_indices = torch.where(text_input_ids == double_return_token_id)
300
+
301
+ if last_double_return_token_indices.shape[0] == 3:
302
+ # in case the prompt is too long
303
+ last_double_return_token_indices = torch.cat(
304
+ (last_double_return_token_indices, torch.tensor([text_input_ids.shape[-1]]))
305
+ )
306
+ batch_indices = torch.cat((batch_indices, torch.tensor([0])))
307
+
308
+ last_double_return_token_indices = last_double_return_token_indices.reshape(text_input_ids.shape[0], -1)[
309
+ :, -1
310
+ ]
311
+ batch_indices = batch_indices.reshape(text_input_ids.shape[0], -1)[:, -1]
312
+ assistant_crop_start = last_double_return_token_indices - 1 + image_emb_len - 4
313
+ assistant_crop_end = last_double_return_token_indices - 1 + image_emb_len
314
+ attention_mask_assistant_crop_start = last_double_return_token_indices - 4
315
+ attention_mask_assistant_crop_end = last_double_return_token_indices
316
+
317
+ prompt_embed_list = []
318
+ prompt_attention_mask_list = []
319
+ image_embed_list = []
320
+ image_attention_mask_list = []
321
+
322
+ for i in range(text_input_ids.shape[0]):
323
+ prompt_embed_list.append(
324
+ torch.cat(
325
+ [
326
+ prompt_embeds[i, text_crop_start : assistant_crop_start[i].item()],
327
+ prompt_embeds[i, assistant_crop_end[i].item() :],
328
+ ]
329
+ )
330
+ )
331
+ prompt_attention_mask_list.append(
332
+ torch.cat(
333
+ [
334
+ prompt_attention_mask[i, crop_start : attention_mask_assistant_crop_start[i].item()],
335
+ prompt_attention_mask[i, attention_mask_assistant_crop_end[i].item() :],
336
+ ]
337
+ )
338
+ )
339
+ image_embed_list.append(prompt_embeds[i, image_emb_start:image_emb_end])
340
+ image_attention_mask_list.append(
341
+ torch.ones(image_embed_list[-1].shape[0]).to(prompt_embeds.device).to(prompt_attention_mask.dtype)
342
+ )
343
+
344
+ prompt_embed_list = torch.stack(prompt_embed_list)
345
+ prompt_attention_mask_list = torch.stack(prompt_attention_mask_list)
346
+ image_embed_list = torch.stack(image_embed_list)
347
+ image_attention_mask_list = torch.stack(image_attention_mask_list)
348
+
349
+ if 0 < image_embed_interleave < 6:
350
+ image_embed_list = image_embed_list[:, ::image_embed_interleave, :]
351
+ image_attention_mask_list = image_attention_mask_list[:, ::image_embed_interleave]
352
+
353
+ if not (
354
+ prompt_embed_list.shape[0] == prompt_attention_mask_list.shape[0]
355
+ and image_embed_list.shape[0] == image_attention_mask_list.shape[0]
356
+ ):
357
+ raise ValueError(
358
+ "Input tensors have mismatched batch dimensions."
359
+ )
360
+
361
+ prompt_embeds = torch.cat([image_embed_list, prompt_embed_list], dim=1)
362
+ prompt_attention_mask = torch.cat([image_attention_mask_list, prompt_attention_mask_list], dim=1)
363
+
364
+ return prompt_embeds, prompt_attention_mask
365
+
366
+ def _get_clip_prompt_embeds(
367
+ self,
368
+ prompt: Union[str, List[str]],
369
+ num_videos_per_prompt: int = 1,
370
+ device: Optional[torch.device] = None,
371
+ dtype: Optional[torch.dtype] = None,
372
+ max_sequence_length: int = 77,
373
+ ) -> torch.Tensor:
374
+ device = device or self._execution_device
375
+ dtype = dtype or self.text_encoder_2.dtype
376
+
377
+ prompt = [prompt] if isinstance(prompt, str) else prompt
378
+
379
+ text_inputs = self.tokenizer_2(
380
+ prompt,
381
+ padding="max_length",
382
+ max_length=max_sequence_length,
383
+ truncation=True,
384
+ return_tensors="pt",
385
+ )
386
+
387
+ text_input_ids = text_inputs.input_ids
388
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
389
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
390
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
391
+ # logger.warning(
392
+ # "The following part of your input was truncated because CLIP can only handle sequences up to"
393
+ # f" {max_sequence_length} tokens: {removed_text}"
394
+ # )
395
+
396
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False).pooler_output
397
+ return prompt_embeds
398
+
399
+ def encode_prompt(
400
+ self,
401
+ image: torch.Tensor,
402
+ prompt: Union[str, List[str]],
403
+ prompt_condition: Union[str, List[str], None] = None,
404
+ prompt_2: Union[str, List[str]] = None,
405
+ prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
406
+ num_videos_per_prompt: int = 1,
407
+ prompt_embeds: Optional[torch.Tensor] = None,
408
+ prompt_embeds_condition: Optional[torch.Tensor] = None,
409
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
410
+ prompt_attention_mask: Optional[torch.Tensor] = None,
411
+ prompt_attention_mask_condition: Optional[torch.Tensor] = None,
412
+ device: Optional[torch.device] = None,
413
+ dtype: Optional[torch.dtype] = None,
414
+ max_sequence_length: int = 256,
415
+ image_embed_interleave: int = 2,
416
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
417
+ if prompt_embeds is None:
418
+ prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds(
419
+ image,
420
+ prompt,
421
+ prompt_template,
422
+ num_videos_per_prompt,
423
+ device=device,
424
+ dtype=dtype,
425
+ max_sequence_length=max_sequence_length,
426
+ image_embed_interleave=image_embed_interleave,
427
+ )
428
+
429
+ if prompt_condition is not None and (prompt_embeds_condition is None or prompt_attention_mask_condition is None):
430
+ prompt_embeds_condition, prompt_attention_mask_condition = self._get_llama_prompt_embeds(
431
+ image,
432
+ prompt_condition,
433
+ prompt_template,
434
+ num_videos_per_prompt,
435
+ device=device,
436
+ dtype=dtype,
437
+ max_sequence_length=max_sequence_length,
438
+ image_embed_interleave=image_embed_interleave,
439
+ )
440
+ else:
441
+ prompt_embeds_condition = prompt_embeds_condition
442
+ prompt_attention_mask_condition = prompt_attention_mask_condition
443
+
444
+ if pooled_prompt_embeds is None:
445
+ if prompt_2 is None:
446
+ prompt_2 = prompt
447
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
448
+ prompt,
449
+ num_videos_per_prompt,
450
+ device=device,
451
+ dtype=dtype,
452
+ max_sequence_length=77,
453
+ )
454
+
455
+ return prompt_embeds, prompt_embeds_condition, pooled_prompt_embeds, prompt_attention_mask, prompt_attention_mask_condition
456
+
457
+ def check_inputs(
458
+ self,
459
+ prompt,
460
+ prompt_2,
461
+ height,
462
+ width,
463
+ prompt_embeds=None,
464
+ callback_on_step_end_tensor_inputs=None,
465
+ prompt_template=None,
466
+ true_cfg_scale=1.0,
467
+ guidance_scale=1.0,
468
+ ):
469
+ if height % 16 != 0 or width % 16 != 0:
470
+ raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
471
+
472
+ if callback_on_step_end_tensor_inputs is not None and not all(
473
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
474
+ ):
475
+ raise ValueError(
476
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
477
+ )
478
+
479
+ if prompt is not None and prompt_embeds is not None:
480
+ raise ValueError(
481
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
482
+ " only forward one of the two."
483
+ )
484
+ elif prompt_2 is not None and prompt_embeds is not None:
485
+ raise ValueError(
486
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
487
+ " only forward one of the two."
488
+ )
489
+ elif prompt is None and prompt_embeds is None:
490
+ raise ValueError(
491
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
492
+ )
493
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
494
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
495
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
496
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
497
+
498
+ if prompt_template is not None:
499
+ if not isinstance(prompt_template, dict):
500
+ raise ValueError(f"`prompt_template` has to be of type `dict` but is {type(prompt_template)}")
501
+ if "template" not in prompt_template:
502
+ raise ValueError(
503
+ f"`prompt_template` has to contain a key `template` but only found {prompt_template.keys()}"
504
+ )
505
+
506
+ if true_cfg_scale > 1.0 and guidance_scale > 1.0:
507
+ logger.warning(
508
+ "Both `true_cfg_scale` and `guidance_scale` are greater than 1.0. This will result in both "
509
+ "classifier-free guidance and embedded-guidance to be applied. This is not recommended "
510
+ "as it may lead to higher memory usage, slower inference and potentially worse results."
511
+ )
512
+
513
+ def prepare_latents(
514
+ self,
515
+ image: torch.Tensor,
516
+ batch_size: int,
517
+ num_channels_latents: int = 32,
518
+ height: int = 720,
519
+ width: int = 1280,
520
+ num_frames: int = 129,
521
+ dtype: Optional[torch.dtype] = None,
522
+ device: Optional[torch.device] = None,
523
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
524
+ latents: Optional[torch.Tensor] = None,
525
+ image_condition_type: str = "latent_concat",
526
+ ) -> torch.Tensor:
527
+ if isinstance(generator, list) and len(generator) != batch_size:
528
+ raise ValueError(
529
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
530
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
531
+ )
532
+
533
+ num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
534
+ latent_height, latent_width = height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial
535
+ shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
536
+
537
+ image = image.unsqueeze(2) # [B, C, 1, H, W]
538
+ if isinstance(generator, list):
539
+ image_latents = [
540
+ retrieve_latents(self.vae.encode(image[i].unsqueeze(0)), generator[i], "argmax")
541
+ for i in range(batch_size)
542
+ ]
543
+ else:
544
+ image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator, "argmax") for img in image]
545
+
546
+ image_latents = torch.cat(image_latents, dim=0).to(dtype) * self.vae_scaling_factor
547
+ image_latents = image_latents.repeat(1, 1, num_latent_frames, 1, 1)
548
+
549
+ if latents is None:
550
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
551
+ else:
552
+ latents = latents.to(device=device, dtype=dtype)
553
+
554
+ t = torch.tensor([0.999]).to(device=device)
555
+ latents = latents * t + image_latents * (1 - t)
556
+
557
+ if image_condition_type == "token_replace":
558
+ image_latents = image_latents[:, :, :1]
559
+
560
+ return latents, image_latents
561
+
562
+ def enable_vae_slicing(self):
563
+ r"""
564
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
565
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
566
+ """
567
+ self.vae.enable_slicing()
568
+
569
+ def disable_vae_slicing(self):
570
+ r"""
571
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
572
+ computing decoding in one step.
573
+ """
574
+ self.vae.disable_slicing()
575
+
576
+ def enable_vae_tiling(self):
577
+ r"""
578
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
579
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
580
+ processing larger images.
581
+ """
582
+ self.vae.enable_tiling()
583
+
584
+ def disable_vae_tiling(self):
585
+ r"""
586
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
587
+ computing decoding in one step.
588
+ """
589
+ self.vae.disable_tiling()
590
+
591
+ @property
592
+ def guidance_scale(self):
593
+ return self._guidance_scale
594
+
595
+ @property
596
+ def num_timesteps(self):
597
+ return self._num_timesteps
598
+
599
+ @property
600
+ def attention_kwargs(self):
601
+ return self._attention_kwargs
602
+
603
+ @property
604
+ def current_timestep(self):
605
+ return self._current_timestep
606
+
607
+ @property
608
+ def interrupt(self):
609
+ return self._interrupt
610
+
611
+ @torch.no_grad()
612
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
613
+ def __call__(
614
+ self,
615
+ image: PIL.Image.Image,
616
+ prompt: Union[str, List[str]] = None,
617
+ prompt_condition: Union[str, List[str], None] = None,
618
+ prompt_2: Union[str, List[str]] = None,
619
+ negative_prompt: Union[str, List[str]] = None,
620
+ negative_prompt_2: Union[str, List[str]] = None,
621
+ height: int = 720,
622
+ width: int = 1280,
623
+ num_frames: int = 129,
624
+ num_inference_steps: int = 50,
625
+ sigmas: List[float] = None,
626
+ true_cfg_scale: float = 1.0,
627
+ guidance_scale: float = 1.0,
628
+ num_videos_per_prompt: Optional[int] = 1,
629
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
630
+ latents: Optional[torch.Tensor] = None,
631
+ prompt_embeds: Optional[torch.Tensor] = None,
632
+ prompt_embeds_condition: Optional[torch.Tensor] = None,
633
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
634
+ prompt_attention_mask: Optional[torch.Tensor] = None,
635
+ prompt_attention_mask_condition: Optional[torch.Tensor] = None,
636
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
637
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
638
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
639
+ output_type: Optional[str] = "pil",
640
+ return_dict: bool = True,
641
+ attention_kwargs: Optional[Dict[str, Any]] = None,
642
+ callback_on_step_end: Optional[
643
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
644
+ ] = None,
645
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
646
+ prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
647
+ max_sequence_length: int = 256,
648
+ image_embed_interleave: Optional[int] = None,
649
+ frame_gap: Union[int, None] = None,
650
+ mixup: bool = False,
651
+ mixup_num_imgs: Union[int, None] = None,
652
+ ):
653
+ r"""
654
+ The call function to the pipeline for generation.
655
+
656
+ Args:
657
+ prompt (`str` or `List[str]`, *optional*):
658
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
659
+ instead.
660
+ prompt_2 (`str` or `List[str]`, *optional*):
661
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
662
+ will be used instead.
663
+ negative_prompt (`str` or `List[str]`, *optional*):
664
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
665
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
666
+ not greater than `1`).
667
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
668
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
669
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
670
+ height (`int`, defaults to `720`):
671
+ The height in pixels of the generated image.
672
+ width (`int`, defaults to `1280`):
673
+ The width in pixels of the generated image.
674
+ num_frames (`int`, defaults to `129`):
675
+ The number of frames in the generated video.
676
+ num_inference_steps (`int`, defaults to `50`):
677
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
678
+ expense of slower inference.
679
+ sigmas (`List[float]`, *optional*):
680
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
681
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
682
+ will be used.
683
+ true_cfg_scale (`float`, *optional*, defaults to 1.0):
684
+ When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
685
+ guidance_scale (`float`, defaults to `1.0`):
686
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
687
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
688
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
689
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
690
+ usually at the expense of lower image quality. Note that the only available HunyuanVideo model is
691
+ CFG-distilled, which means that traditional guidance between unconditional and conditional latent is
692
+ not applied.
693
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
694
+ The number of images to generate per prompt.
695
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
696
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
697
+ generation deterministic.
698
+ latents (`torch.Tensor`, *optional*):
699
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
700
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
701
+ tensor is generated by sampling using the supplied random `generator`.
702
+ prompt_embeds (`torch.Tensor`, *optional*):
703
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
704
+ provided, text embeddings are generated from the `prompt` input argument.
705
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
706
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
707
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
708
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
709
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
710
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
711
+ argument.
712
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
713
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
714
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
715
+ input argument.
716
+ output_type (`str`, *optional*, defaults to `"pil"`):
717
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
718
+ return_dict (`bool`, *optional*, defaults to `True`):
719
+ Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a plain tuple.
720
+ attention_kwargs (`dict`, *optional*):
721
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
722
+ `self.processor` in
723
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
724
+ clip_skip (`int`, *optional*):
725
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
726
+ the output of the pre-final layer will be used for computing the prompt embeddings.
727
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
728
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
729
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
730
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
731
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
732
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
733
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
734
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
735
+ `._callback_tensor_inputs` attribute of your pipeline class.
736
+
737
+ Examples:
738
+
739
+ Returns:
740
+ [`~HunyuanVideoPipelineOutput`] or `tuple`:
741
+ If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, otherwise a `tuple` is returned
742
+ where the first element is a list with the generated images and the second element is a list of `bool`s
743
+ indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
744
+ """
745
+
746
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
747
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
748
+
749
+ # 1. Check inputs. Raise error if not correct
750
+ self.check_inputs(
751
+ prompt,
752
+ prompt_2,
753
+ height,
754
+ width,
755
+ prompt_embeds,
756
+ callback_on_step_end_tensor_inputs,
757
+ prompt_template,
758
+ true_cfg_scale,
759
+ guidance_scale,
760
+ )
761
+
762
+ image_condition_type = self.transformer.config.image_condition_type
763
+ has_neg_prompt = negative_prompt is not None or (
764
+ negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
765
+ )
766
+ do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
767
+ image_embed_interleave = (
768
+ image_embed_interleave
769
+ if image_embed_interleave is not None
770
+ else (
771
+ 2 if image_condition_type == "latent_concat" else 4 if image_condition_type == "token_replace" else 1
772
+ )
773
+ )
774
+
775
+ self._guidance_scale = guidance_scale
776
+ self._attention_kwargs = attention_kwargs
777
+ self._current_timestep = None
778
+ self._interrupt = False
779
+
780
+ device = self._execution_device
781
+
782
+ # 2. Define call parameters
783
+ if prompt is not None and isinstance(prompt, str):
784
+ batch_size = 1
785
+ elif prompt is not None and isinstance(prompt, list):
786
+ batch_size = len(prompt)
787
+ else:
788
+ batch_size = prompt_embeds.shape[0]
789
+
790
+ # 3. Prepare latent variables
791
+ vae_dtype = self.vae.dtype
792
+ image_tensor = self.video_processor.preprocess(image, height, width).to(device, vae_dtype)
793
+
794
+ if image_condition_type == "latent_concat":
795
+ num_channels_latents = (self.transformer.config.in_channels - 1) // 2
796
+ elif image_condition_type == "token_replace":
797
+ num_channels_latents = self.transformer.config.in_channels
798
+
799
+ latents, image_latents = self.prepare_latents(
800
+ image_tensor,
801
+ batch_size * num_videos_per_prompt,
802
+ num_channels_latents,
803
+ height,
804
+ width,
805
+ num_frames if not mixup else num_frames + 4 * mixup_num_imgs,
806
+ torch.float32,
807
+ device,
808
+ generator,
809
+ latents,
810
+ image_condition_type,
811
+ )
812
+ if image_condition_type == "latent_concat":
813
+ image_latents[:, :, 1:] = 0
814
+ mask = image_latents.new_ones(image_latents.shape[0], 1, *image_latents.shape[2:])
815
+ mask[:, :, 1:] = 0
816
+
817
+ # 4. Encode input prompt
818
+ transformer_dtype = self.transformer.dtype
819
+ (prompt_embeds,
820
+ prompt_embeds_condition,
821
+ pooled_prompt_embeds,
822
+ prompt_attention_mask,
823
+ prompt_attention_mask_condition) = self.encode_prompt(
824
+ image=image,
825
+ prompt=prompt,
826
+ prompt_condition=prompt_condition,
827
+ prompt_2=prompt_2,
828
+ prompt_template=prompt_template,
829
+ num_videos_per_prompt=num_videos_per_prompt,
830
+ prompt_embeds=prompt_embeds,
831
+ prompt_embeds_condition=prompt_embeds_condition,
832
+ pooled_prompt_embeds=pooled_prompt_embeds,
833
+ prompt_attention_mask=prompt_attention_mask,
834
+ prompt_attention_mask_condition=prompt_attention_mask_condition,
835
+ device=device,
836
+ max_sequence_length=max_sequence_length,
837
+ image_embed_interleave=image_embed_interleave,
838
+ )
839
+ prompt_embeds = prompt_embeds.to(transformer_dtype)
840
+ prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
841
+ pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
842
+
843
+ if do_true_cfg:
844
+ black_image = PIL.Image.new("RGB", (width, height), 0)
845
+ negative_prompt_embeds, negative_pooled_prompt_embeds, negative_prompt_attention_mask = self.encode_prompt(
846
+ image=black_image,
847
+ prompt=negative_prompt,
848
+ prompt_2=negative_prompt_2,
849
+ prompt_template=prompt_template,
850
+ num_videos_per_prompt=num_videos_per_prompt,
851
+ prompt_embeds=negative_prompt_embeds,
852
+ pooled_prompt_embeds=negative_pooled_prompt_embeds,
853
+ prompt_attention_mask=negative_prompt_attention_mask,
854
+ device=device,
855
+ max_sequence_length=max_sequence_length,
856
+ )
857
+ negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
858
+ negative_prompt_attention_mask = negative_prompt_attention_mask.to(transformer_dtype)
859
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(transformer_dtype)
860
+
861
+ # 5. Prepare timesteps
862
+ sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
863
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas)
864
+
865
+ # 6. Prepare guidance condition
866
+ guidance = None
867
+ if self.transformer.config.guidance_embeds:
868
+ guidance = (
869
+ torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
870
+ )
871
+
872
+ # 7. Denoising loop
873
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
874
+ self._num_timesteps = len(timesteps)
875
+
876
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
877
+ for i, t in enumerate(timesteps):
878
+ if self.interrupt:
879
+ continue
880
+
881
+ self._current_timestep = t
882
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
883
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
884
+
885
+ if image_condition_type == "latent_concat":
886
+ latent_model_input = torch.cat([latents, image_latents, mask], dim=1).to(transformer_dtype)
887
+ elif image_condition_type == "token_replace":
888
+ latent_model_input = torch.cat([image_latents, latents[:, :, 1:]], dim=2).to(transformer_dtype)
889
+
890
+ noise_pred = self.transformer(
891
+ hidden_states=latent_model_input,
892
+ timestep=timestep,
893
+ encoder_hidden_states=prompt_embeds,
894
+ encoder_hidden_states_condition=prompt_embeds_condition,
895
+ encoder_attention_mask=prompt_attention_mask,
896
+ encoder_attention_mask_condition=prompt_attention_mask_condition,
897
+ pooled_projections=pooled_prompt_embeds,
898
+ guidance=guidance,
899
+ attention_kwargs=attention_kwargs,
900
+ return_dict=False,
901
+ frame_gap=int(frame_gap / 4) if frame_gap is not None else frame_gap,
902
+ )[0]
903
+
904
+ if do_true_cfg:
905
+ neg_noise_pred = self.transformer(
906
+ hidden_states=latent_model_input,
907
+ timestep=timestep,
908
+ encoder_hidden_states=negative_prompt_embeds,
909
+ encoder_attention_mask=negative_prompt_attention_mask,
910
+ pooled_projections=negative_pooled_prompt_embeds,
911
+ guidance=guidance,
912
+ attention_kwargs=attention_kwargs,
913
+ return_dict=False,
914
+ )[0]
915
+ noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
916
+
917
+ # compute the previous noisy sample x_t -> x_t-1
918
+ if image_condition_type == "latent_concat":
919
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
920
+ elif image_condition_type == "token_replace":
921
+ latents = latents = self.scheduler.step(
922
+ noise_pred[:, :, 1:], t, latents[:, :, 1:], return_dict=False
923
+ )[0]
924
+ latents = torch.cat([image_latents, latents], dim=2)
925
+
926
+ if callback_on_step_end is not None:
927
+ callback_kwargs = {}
928
+ for k in callback_on_step_end_tensor_inputs:
929
+ callback_kwargs[k] = locals()[k]
930
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
931
+
932
+ latents = callback_outputs.pop("latents", latents)
933
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
934
+
935
+ # call the callback, if provided
936
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
937
+ progress_bar.update()
938
+
939
+ if XLA_AVAILABLE:
940
+ xm.mark_step()
941
+
942
+ self._current_timestep = None
943
+
944
+ if not mixup:
945
+ generated_img_frame_start = image_latents.shape[2]
946
+ latents = latents[:, :, generated_img_frame_start:]
947
+ if not output_type == "latent":
948
+ latents = latents.to(self.vae.dtype) / self.vae_scaling_factor
949
+ video = self.vae.decode(latents, return_dict=False)[0]
950
+ if image_condition_type == "latent_concat":
951
+ video = video[:, :, 4:, :, :]
952
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
953
+ if mixup:
954
+ single_generated_decoded = self.vae.decode(latents[:, :, -1:], return_dict=False)[0]
955
+ single_generated_decoded = self.video_processor.postprocess_video(single_generated_decoded, output_type=output_type)
956
+ video = torch.cat([single_generated_decoded, video], dim=1)
957
+ else:
958
+ if image_condition_type == "latent_concat":
959
+ video = latents[:, :, 1:, :, :]
960
+ else:
961
+ video = latents
962
+
963
+ # Offload all models
964
+ self.maybe_free_model_hooks()
965
+
966
+ if not return_dict:
967
+ return (video,)
968
+
969
+ return HunyuanVideoPipelineOutput(frames=video)
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ torch==2.4.1
2
+ torchvision==0.19.1
3
+ diffusers==0.33.1
4
+ transformers==4.45.0
5
+ flash-attn==2.7.3
6
+ gradio
7
+ omegaconf
8
+ peft
9
+ opencv-python