Spaces:
Runtime error
Runtime error
# Copyright 2024 The Hunyuan Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified by [Hengyuan Cao] in 2025. | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.loaders import FromOriginalModelMixin | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import PeftAdapterMixin | |
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | |
from diffusers.models.attention import FeedForward | |
from diffusers.models.attention_processor import Attention, AttentionProcessor | |
from diffusers.models.cache_utils import CacheMixin | |
from diffusers.models.embeddings import ( | |
CombinedTimestepTextProjEmbeddings, | |
PixArtAlphaTextProjection, | |
TimestepEmbedding, | |
Timesteps, | |
get_1d_rotary_pos_embed, | |
) | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle, FP32LayerNorm | |
from torch.nn.utils.rnn import pad_sequence | |
try: | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
FLASH_ATTN_AVALIABLE = True | |
except: | |
FLASH_ATTN_AVALIABLE = True | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class HunyuanVideoAttnProcessor2_0: | |
def __init__(self, inference_subject_driven: bool = False): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError( | |
"HunyuanVideoAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0." | |
) | |
self.inference_subject_driven = inference_subject_driven | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
enhance_tp: bool = False, | |
) -> torch.Tensor: | |
if attn.add_q_proj is None and encoder_hidden_states is not None: | |
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) | |
# 1. QKV projections | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
# 2. QK normalization | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# 3. Rotational positional embeddings applied to latent stream | |
if image_rotary_emb is not None: | |
from diffusers.models.embeddings import apply_rotary_emb | |
if attn.add_q_proj is None and encoder_hidden_states is not None: | |
query = torch.cat( | |
[ | |
apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb), | |
query[:, :, -encoder_hidden_states.shape[1] :], | |
], | |
dim=2, | |
) | |
key = torch.cat( | |
[ | |
apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb), | |
key[:, :, -encoder_hidden_states.shape[1] :], | |
], | |
dim=2, | |
) | |
else: | |
query = apply_rotary_emb(query, image_rotary_emb) | |
key = apply_rotary_emb(key, image_rotary_emb) | |
# 4. Encoder condition QKV projection and normalization | |
if attn.add_q_proj is not None and encoder_hidden_states is not None: | |
encoder_query = attn.add_q_proj(encoder_hidden_states) | |
encoder_key = attn.add_k_proj(encoder_hidden_states) | |
encoder_value = attn.add_v_proj(encoder_hidden_states) | |
encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
if attn.norm_added_q is not None: | |
encoder_query = attn.norm_added_q(encoder_query) | |
if attn.norm_added_k is not None: | |
encoder_key = attn.norm_added_k(encoder_key) | |
query = torch.cat([query, encoder_query], dim=2) | |
key = torch.cat([key, encoder_key], dim=2) | |
value = torch.cat([value, encoder_value], dim=2) | |
query = query.transpose(1, 2) # batch, sequence, num_head, head_dim | |
key = key.transpose(1, 2) | |
value = value.transpose(1, 2) | |
# 5. Attention | |
if FLASH_ATTN_AVALIABLE: | |
if attention_mask is None: | |
hidden_states = flash_attn_func(query, key, value, dropout=0.0) | |
else: | |
B, S, H, D = query.size() | |
unit_img_seq_len = 1024 | |
unit_txt_seq_len = 144 + 252 | |
if not (unit_img_seq_len*4+unit_txt_seq_len == S or | |
unit_img_seq_len*4+unit_txt_seq_len*2 == S): | |
raise ValueError("Get wrong sequence length.") | |
if S == unit_img_seq_len*4+unit_txt_seq_len: | |
seg_start = [0, unit_img_seq_len, unit_img_seq_len*4] | |
seg_end = [unit_img_seq_len, unit_img_seq_len*4, unit_img_seq_len*4+unit_txt_seq_len] | |
k_segs = [[0], [0, 1, 2], [1, 2]] | |
elif S == unit_img_seq_len*4+unit_txt_seq_len*2: | |
seg_start = [0, unit_img_seq_len, unit_img_seq_len*4, unit_img_seq_len*4+unit_txt_seq_len] | |
seg_end = [unit_img_seq_len, unit_img_seq_len*4, unit_img_seq_len*4+unit_txt_seq_len, S] | |
k_segs = [[0, 3], [0, 1, 2], [1,2], [0, 3]] | |
valid_indices = attention_mask[:, 0, 0] | |
q_lens = torch.tensor([u[i:j].long().sum().item() for u in valid_indices for i,j in zip(seg_start, seg_end)], | |
dtype=torch.int32, device=valid_indices.device) | |
k_lens = torch.tensor([sum([u[seg_start[seg]:seg_end[seg]].long().sum().item() for seg in segs]) for u in valid_indices for segs in k_segs], | |
dtype=torch.int32, device=valid_indices.device) | |
query = torch.cat([u[i:j][v[i:j]] for u,v in zip(query, valid_indices) for i,j in zip(seg_start, seg_end)], dim=0) | |
if self.inference_subject_driven or enhance_tp: | |
key = torch.cat([torch.cat([ torch.cat([u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]][:144], u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]][144:] + 0.6 * u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]][144:].abs().mean()], dim=0) if segs == [0, 1, 2] and seg == 2 else u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]] for seg in segs], dim=0) \ | |
for u,v in zip(key, valid_indices) for segs in k_segs], dim=0) | |
else: | |
key = torch.cat([torch.cat([u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]] for seg in segs], dim=0) \ | |
for u,v in zip(key, valid_indices) for segs in k_segs], dim=0) | |
value = torch.cat([torch.cat([u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]] for seg in segs], dim=0) \ | |
for u,v in zip(value, valid_indices) for segs in k_segs], dim=0) | |
cu_seqlens_q = F.pad(q_lens.cumsum(dim=0), (1, 0)).to(torch.int32) | |
cu_seqlens_k = F.pad(k_lens.cumsum(dim=0), (1, 0)).to(torch.int32) | |
max_seqlen_q = torch.max(q_lens).item() | |
max_seqlen_k = torch.max(k_lens).item() | |
hidden_states = flash_attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k) | |
num_seq_parts = len(k_segs) | |
hidden_states = pad_sequence([ | |
hidden_states[start: end] | |
for start, end in zip(cu_seqlens_q[::num_seq_parts][:-1], cu_seqlens_q[::num_seq_parts][1:]) | |
], batch_first=True) | |
hidden_states = F.pad( | |
hidden_states, | |
(0, 0, 0, 0, 0, S - hidden_states.size(1), 0, 0) | |
) | |
else: | |
query = query.permute(0, 2, 1, 3) # batch, num_head, sequence, head_dim | |
key = key.permute(0, 2, 1, 3) | |
value = value.permute(0, 2, 1, 3) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) # use sdpa in torch may generate black output, upgrade to >=2.5.1 may solve this | |
hidden_states = hidden_states.transpose(1, 2) | |
# flatten num_head * head_dim | |
hidden_states = hidden_states.flatten(2, 3) | |
hidden_states = hidden_states.to(query.dtype) | |
# 6. Output projection | |
if encoder_hidden_states is not None: | |
hidden_states, encoder_hidden_states = ( | |
hidden_states[:, : -encoder_hidden_states.shape[1]], | |
hidden_states[:, -encoder_hidden_states.shape[1] :], | |
) | |
if getattr(attn, "to_out", None) is not None: | |
hidden_states = attn.to_out[0](hidden_states) | |
hidden_states = attn.to_out[1](hidden_states) | |
if getattr(attn, "to_add_out", None) is not None: | |
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
return hidden_states, encoder_hidden_states | |
class HunyuanVideoPatchEmbed(nn.Module): | |
def __init__( | |
self, | |
patch_size: Union[int, Tuple[int, int, int]] = 16, | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
) -> None: | |
super().__init__() | |
patch_size = (patch_size, patch_size, patch_size) if isinstance(patch_size, int) else patch_size | |
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.proj(hidden_states) | |
hidden_states = hidden_states.flatten(2).transpose(1, 2) # BCFHW -> BNC | |
return hidden_states | |
class HunyuanVideoAdaNorm(nn.Module): | |
def __init__(self, in_features: int, out_features: Optional[int] = None) -> None: | |
super().__init__() | |
out_features = out_features or 2 * in_features | |
self.linear = nn.Linear(in_features, out_features) | |
self.nonlinearity = nn.SiLU() | |
def forward( | |
self, temb: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
temb = self.linear(self.nonlinearity(temb)) | |
gate_msa, gate_mlp = temb.chunk(2, dim=1) | |
gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1) | |
return gate_msa, gate_mlp | |
class HunyuanVideoTokenReplaceAdaLayerNormZero(nn.Module): | |
def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True): | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias) | |
if norm_type == "layer_norm": | |
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) | |
elif norm_type == "fp32_layer_norm": | |
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False) | |
else: | |
raise ValueError( | |
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'." | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
emb: torch.Tensor, | |
token_replace_emb: torch.Tensor, | |
first_frame_num_tokens: int, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
emb = self.linear(self.silu(emb)) | |
token_replace_emb = self.linear(self.silu(token_replace_emb)) | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) | |
tr_shift_msa, tr_scale_msa, tr_gate_msa, tr_shift_mlp, tr_scale_mlp, tr_gate_mlp = token_replace_emb.chunk( | |
6, dim=1 | |
) | |
norm_hidden_states = self.norm(hidden_states) | |
hidden_states_zero = ( | |
norm_hidden_states[:, :first_frame_num_tokens] * (1 + tr_scale_msa[:, None]) + tr_shift_msa[:, None] | |
) | |
hidden_states_orig = ( | |
norm_hidden_states[:, first_frame_num_tokens:] * (1 + scale_msa[:, None]) + shift_msa[:, None] | |
) | |
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) | |
return ( | |
hidden_states, | |
gate_msa, | |
shift_mlp, | |
scale_mlp, | |
gate_mlp, | |
tr_gate_msa, | |
tr_shift_mlp, | |
tr_scale_mlp, | |
tr_gate_mlp, | |
) | |
class HunyuanVideoTokenReplaceAdaLayerNormZeroSingle(nn.Module): | |
def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True): | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias) | |
if norm_type == "layer_norm": | |
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) | |
else: | |
raise ValueError( | |
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'." | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
emb: torch.Tensor, | |
token_replace_emb: torch.Tensor, | |
first_frame_num_tokens: int, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
emb = self.linear(self.silu(emb)) | |
token_replace_emb = self.linear(self.silu(token_replace_emb)) | |
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1) | |
tr_shift_msa, tr_scale_msa, tr_gate_msa = token_replace_emb.chunk(3, dim=1) | |
norm_hidden_states = self.norm(hidden_states) | |
hidden_states_zero = ( | |
norm_hidden_states[:, :first_frame_num_tokens] * (1 + tr_scale_msa[:, None]) + tr_shift_msa[:, None] | |
) | |
hidden_states_orig = ( | |
norm_hidden_states[:, first_frame_num_tokens:] * (1 + scale_msa[:, None]) + shift_msa[:, None] | |
) | |
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) | |
return hidden_states, gate_msa, tr_gate_msa | |
class HunyuanVideoConditionEmbedding(nn.Module): | |
def __init__( | |
self, | |
embedding_dim: int, | |
pooled_projection_dim: int, | |
guidance_embeds: bool, | |
image_condition_type: Optional[str] = None, | |
): | |
super().__init__() | |
self.image_condition_type = image_condition_type | |
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) | |
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") | |
self.guidance_embedder = None | |
if guidance_embeds: | |
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
def forward( | |
self, timestep: torch.Tensor, pooled_projection: torch.Tensor, guidance: Optional[torch.Tensor] = None | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
timesteps_proj = self.time_proj(timestep) | |
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D) | |
pooled_projections = self.text_embedder(pooled_projection) | |
conditioning = timesteps_emb + pooled_projections | |
token_replace_emb = None | |
if self.image_condition_type == "token_replace": | |
token_replace_timestep = torch.zeros_like(timestep) | |
token_replace_proj = self.time_proj(token_replace_timestep) | |
token_replace_emb = self.timestep_embedder(token_replace_proj.to(dtype=pooled_projection.dtype)) | |
token_replace_emb = token_replace_emb + pooled_projections | |
if self.guidance_embedder is not None: | |
guidance_proj = self.time_proj(guidance) | |
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) | |
conditioning = conditioning + guidance_emb | |
return conditioning, token_replace_emb | |
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module): | |
def __init__( | |
self, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
mlp_width_ratio: str = 4.0, | |
mlp_drop_rate: float = 0.0, | |
attention_bias: bool = True, | |
) -> None: | |
super().__init__() | |
hidden_size = num_attention_heads * attention_head_dim | |
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) | |
self.attn = Attention( | |
query_dim=hidden_size, | |
cross_attention_dim=None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
bias=attention_bias, | |
) | |
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) | |
self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate) | |
self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
norm_hidden_states = self.norm1(hidden_states) | |
attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=attention_mask, | |
) | |
gate_msa, gate_mlp = self.norm_out(temb) | |
hidden_states = hidden_states + attn_output * gate_msa | |
ff_output = self.ff(self.norm2(hidden_states)) | |
hidden_states = hidden_states + ff_output * gate_mlp | |
return hidden_states | |
class HunyuanVideoIndividualTokenRefiner(nn.Module): | |
def __init__( | |
self, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
num_layers: int, | |
mlp_width_ratio: float = 4.0, | |
mlp_drop_rate: float = 0.0, | |
attention_bias: bool = True, | |
) -> None: | |
super().__init__() | |
self.refiner_blocks = nn.ModuleList( | |
[ | |
HunyuanVideoIndividualTokenRefinerBlock( | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
mlp_width_ratio=mlp_width_ratio, | |
mlp_drop_rate=mlp_drop_rate, | |
attention_bias=attention_bias, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
) -> None: | |
self_attn_mask = None | |
if attention_mask is not None: | |
batch_size = attention_mask.shape[0] | |
seq_len = attention_mask.shape[1] | |
attention_mask = attention_mask.to(hidden_states.device).bool() | |
self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1) | |
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3) | |
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool() | |
self_attn_mask[:, :, :, 0] = True | |
for block in self.refiner_blocks: | |
hidden_states = block(hidden_states, temb, self_attn_mask) | |
return hidden_states | |
class HunyuanVideoTokenRefiner(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
num_layers: int, | |
mlp_ratio: float = 4.0, | |
mlp_drop_rate: float = 0.0, | |
attention_bias: bool = True, | |
) -> None: | |
super().__init__() | |
hidden_size = num_attention_heads * attention_head_dim | |
self.time_text_embed = CombinedTimestepTextProjEmbeddings( | |
embedding_dim=hidden_size, pooled_projection_dim=in_channels | |
) | |
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True) | |
self.token_refiner = HunyuanVideoIndividualTokenRefiner( | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
num_layers=num_layers, | |
mlp_width_ratio=mlp_ratio, | |
mlp_drop_rate=mlp_drop_rate, | |
attention_bias=attention_bias, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: torch.LongTensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
) -> torch.Tensor: | |
if attention_mask is None: | |
pooled_projections = hidden_states.mean(dim=1) | |
else: | |
original_dtype = hidden_states.dtype | |
mask_float = attention_mask.float().unsqueeze(-1) | |
pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1) | |
pooled_projections = pooled_projections.to(original_dtype) | |
temb = self.time_text_embed(timestep, pooled_projections) | |
hidden_states = self.proj_in(hidden_states) | |
hidden_states = self.token_refiner(hidden_states, temb, attention_mask) | |
return hidden_states | |
class HunyuanVideoRotaryPosEmbed(nn.Module): | |
def __init__(self, patch_size: int, patch_size_t: int, rope_dim: List[int], theta: float = 256.0) -> None: | |
super().__init__() | |
self.patch_size = patch_size | |
self.patch_size_t = patch_size_t | |
self.rope_dim = rope_dim | |
self.theta = theta | |
def forward(self, hidden_states: torch.Tensor, frame_gap: Union[int, None] = None) -> torch.Tensor: | |
batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
rope_sizes = [num_frames // self.patch_size_t, height // self.patch_size, width // self.patch_size] | |
axes_grids = [] | |
for i in range(3): | |
# Note: The following line diverges from original behaviour. We create the grid on the device, whereas | |
# original implementation creates it on CPU and then moves it to device. This results in numerical | |
# differences in layerwise debugging outputs, but visually it is the same. | |
grid = torch.arange(0, rope_sizes[i], device=hidden_states.device, dtype=torch.float32) | |
if frame_gap is not None and i == 0: | |
grid = grid * frame_gap | |
axes_grids.append(grid) | |
grid = torch.meshgrid(*axes_grids, indexing="ij") # [W, H, T] | |
grid = torch.stack(grid, dim=0) # [3, W, H, T] | |
freqs = [] | |
for i in range(3): | |
freq = get_1d_rotary_pos_embed(self.rope_dim[i], grid[i].reshape(-1), self.theta, use_real=True) | |
freqs.append(freq) | |
freqs_cos = torch.cat([f[0] for f in freqs], dim=1) # (W * H * T, D / 2) | |
freqs_sin = torch.cat([f[1] for f in freqs], dim=1) # (W * H * T, D / 2) | |
return freqs_cos, freqs_sin | |
class HunyuanVideoSingleTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
mlp_ratio: float = 4.0, | |
qk_norm: str = "rms_norm", | |
inference_subject_driven: bool = False, | |
) -> None: | |
super().__init__() | |
hidden_size = num_attention_heads * attention_head_dim | |
mlp_dim = int(hidden_size * mlp_ratio) | |
self.attn = Attention( | |
query_dim=hidden_size, | |
cross_attention_dim=None, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=hidden_size, | |
bias=True, | |
processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven), | |
qk_norm=qk_norm, | |
eps=1e-6, | |
pre_only=True, | |
) | |
self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm") | |
self.proj_mlp = nn.Linear(hidden_size, mlp_dim) | |
self.act_mlp = nn.GELU(approximate="tanh") | |
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
*args, | |
**kwargs, | |
) -> torch.Tensor: | |
text_seq_length = encoder_hidden_states.shape[1] | |
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) | |
residual = hidden_states | |
# 1. Input normalization | |
norm_hidden_states, gate = self.norm(hidden_states, emb=temb) | |
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) | |
norm_hidden_states, norm_encoder_hidden_states = ( | |
norm_hidden_states[:, :-text_seq_length, :], | |
norm_hidden_states[:, -text_seq_length:, :], | |
) | |
# 2. Attention | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
attention_mask=attention_mask, | |
image_rotary_emb=image_rotary_emb, | |
) | |
attn_output = torch.cat([attn_output, context_attn_output], dim=1) | |
# 3. Modulation and residual connection | |
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) | |
hidden_states = gate.unsqueeze(1) * self.proj_out(hidden_states) | |
hidden_states = hidden_states + residual | |
hidden_states, encoder_hidden_states = ( | |
hidden_states[:, :-text_seq_length, :], | |
hidden_states[:, -text_seq_length:, :], | |
) | |
return hidden_states, encoder_hidden_states | |
class HunyuanVideoTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
mlp_ratio: float, | |
qk_norm: str = "rms_norm", | |
inference_subject_driven: bool = False, | |
) -> None: | |
super().__init__() | |
hidden_size = num_attention_heads * attention_head_dim | |
self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm") | |
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm") | |
self.attn = Attention( | |
query_dim=hidden_size, | |
cross_attention_dim=None, | |
added_kv_proj_dim=hidden_size, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=hidden_size, | |
context_pre_only=False, | |
bias=True, | |
processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven), | |
qk_norm=qk_norm, | |
eps=1e-6, | |
) | |
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") | |
self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
*args, | |
**kwargs, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
# 1. Input normalization | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) | |
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( | |
encoder_hidden_states, emb=temb | |
) | |
# 2. Joint attention | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
attention_mask=attention_mask, | |
image_rotary_emb=freqs_cis, | |
) | |
# 3. Modulation and residual connection | |
hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1) | |
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1) | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
# 4. Feed-forward | |
ff_output = self.ff(norm_hidden_states) | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output | |
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output | |
return hidden_states, encoder_hidden_states | |
class HunyuanVideoTokenReplaceSingleTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
mlp_ratio: float = 4.0, | |
qk_norm: str = "rms_norm", | |
inference_subject_driven: bool = False, | |
) -> None: | |
super().__init__() | |
hidden_size = num_attention_heads * attention_head_dim | |
mlp_dim = int(hidden_size * mlp_ratio) | |
self.attn = Attention( | |
query_dim=hidden_size, | |
cross_attention_dim=None, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=hidden_size, | |
bias=True, | |
processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven), | |
qk_norm=qk_norm, | |
eps=1e-6, | |
pre_only=True, | |
) | |
self.norm = HunyuanVideoTokenReplaceAdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm") | |
self.proj_mlp = nn.Linear(hidden_size, mlp_dim) | |
self.act_mlp = nn.GELU(approximate="tanh") | |
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
token_replace_emb: torch.Tensor = None, | |
num_tokens: int = None, | |
enhance_tp: bool = False, | |
) -> torch.Tensor: | |
text_seq_length = encoder_hidden_states.shape[1] | |
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) | |
residual = hidden_states | |
# 1. Input normalization | |
norm_hidden_states, gate, tr_gate = self.norm(hidden_states, temb, token_replace_emb, num_tokens) | |
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) | |
norm_hidden_states, norm_encoder_hidden_states = ( | |
norm_hidden_states[:, :-text_seq_length, :], | |
norm_hidden_states[:, -text_seq_length:, :], | |
) | |
# 2. Attention | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
attention_mask=attention_mask, | |
image_rotary_emb=image_rotary_emb, | |
enhance_tp=enhance_tp, | |
) | |
attn_output = torch.cat([attn_output, context_attn_output], dim=1) | |
# 3. Modulation and residual connection | |
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) | |
proj_output = self.proj_out(hidden_states) | |
hidden_states_zero = proj_output[:, :num_tokens] * tr_gate.unsqueeze(1) | |
hidden_states_orig = proj_output[:, num_tokens:] * gate.unsqueeze(1) | |
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) | |
hidden_states = hidden_states + residual | |
hidden_states, encoder_hidden_states = ( | |
hidden_states[:, :-text_seq_length, :], | |
hidden_states[:, -text_seq_length:, :], | |
) | |
return hidden_states, encoder_hidden_states | |
class HunyuanVideoTokenReplaceTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
mlp_ratio: float, | |
qk_norm: str = "rms_norm", | |
inference_subject_driven: bool = False, | |
) -> None: | |
super().__init__() | |
hidden_size = num_attention_heads * attention_head_dim | |
self.norm1 = HunyuanVideoTokenReplaceAdaLayerNormZero(hidden_size, norm_type="layer_norm") | |
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm") | |
self.attn = Attention( | |
query_dim=hidden_size, | |
cross_attention_dim=None, | |
added_kv_proj_dim=hidden_size, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=hidden_size, | |
context_pre_only=False, | |
bias=True, | |
processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven), | |
qk_norm=qk_norm, | |
eps=1e-6, | |
) | |
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") | |
self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
token_replace_emb: torch.Tensor = None, | |
num_tokens: int = None, | |
enhance_tp: bool = False, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
# 1. Input normalization | |
( | |
norm_hidden_states, | |
gate_msa, | |
shift_mlp, | |
scale_mlp, | |
gate_mlp, | |
tr_gate_msa, | |
tr_shift_mlp, | |
tr_scale_mlp, | |
tr_gate_mlp, | |
) = self.norm1(hidden_states, temb, token_replace_emb, num_tokens) | |
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( | |
encoder_hidden_states, emb=temb | |
) | |
# 2. Joint attention | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
attention_mask=attention_mask, | |
image_rotary_emb=freqs_cis, | |
enhance_tp=enhance_tp, | |
) | |
# 3. Modulation and residual connection | |
hidden_states_zero = hidden_states[:, :num_tokens] + attn_output[:, :num_tokens] * tr_gate_msa.unsqueeze(1) | |
hidden_states_orig = hidden_states[:, num_tokens:] + attn_output[:, num_tokens:] * gate_msa.unsqueeze(1) | |
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) | |
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1) | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
hidden_states_zero = norm_hidden_states[:, :num_tokens] * (1 + tr_scale_mlp[:, None]) + tr_shift_mlp[:, None] | |
hidden_states_orig = norm_hidden_states[:, num_tokens:] * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
norm_hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) | |
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
# 4. Feed-forward | |
ff_output = self.ff(norm_hidden_states) | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
hidden_states_zero = hidden_states[:, :num_tokens] + ff_output[:, :num_tokens] * tr_gate_mlp.unsqueeze(1) | |
hidden_states_orig = hidden_states[:, num_tokens:] + ff_output[:, num_tokens:] * gate_mlp.unsqueeze(1) | |
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) | |
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output | |
return hidden_states, encoder_hidden_states | |
class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin): | |
r""" | |
A Transformer model for video-like data used in [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo). | |
Args: | |
in_channels (`int`, defaults to `16`): | |
The number of channels in the input. | |
out_channels (`int`, defaults to `16`): | |
The number of channels in the output. | |
num_attention_heads (`int`, defaults to `24`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, defaults to `128`): | |
The number of channels in each head. | |
num_layers (`int`, defaults to `20`): | |
The number of layers of dual-stream blocks to use. | |
num_single_layers (`int`, defaults to `40`): | |
The number of layers of single-stream blocks to use. | |
num_refiner_layers (`int`, defaults to `2`): | |
The number of layers of refiner blocks to use. | |
mlp_ratio (`float`, defaults to `4.0`): | |
The ratio of the hidden layer size to the input size in the feedforward network. | |
patch_size (`int`, defaults to `2`): | |
The size of the spatial patches to use in the patch embedding layer. | |
patch_size_t (`int`, defaults to `1`): | |
The size of the tmeporal patches to use in the patch embedding layer. | |
qk_norm (`str`, defaults to `rms_norm`): | |
The normalization to use for the query and key projections in the attention layers. | |
guidance_embeds (`bool`, defaults to `True`): | |
Whether to use guidance embeddings in the model. | |
text_embed_dim (`int`, defaults to `4096`): | |
Input dimension of text embeddings from the text encoder. | |
pooled_projection_dim (`int`, defaults to `768`): | |
The dimension of the pooled projection of the text embeddings. | |
rope_theta (`float`, defaults to `256.0`): | |
The value of theta to use in the RoPE layer. | |
rope_axes_dim (`Tuple[int]`, defaults to `(16, 56, 56)`): | |
The dimensions of the axes to use in the RoPE layer. | |
image_condition_type (`str`, *optional*, defaults to `None`): | |
The type of image conditioning to use. If `None`, no image conditioning is used. If `latent_concat`, the | |
image is concatenated to the latent stream. If `token_replace`, the image is used to replace first-frame | |
tokens in the latent stream and apply conditioning. | |
""" | |
_supports_gradient_checkpointing = True | |
_skip_layerwise_casting_patterns = ["x_embedder", "context_embedder", "norm"] | |
_no_split_modules = [ | |
"HunyuanVideoTransformerBlock", | |
"HunyuanVideoSingleTransformerBlock", | |
"HunyuanVideoPatchEmbed", | |
"HunyuanVideoTokenRefiner", | |
] | |
def __init__( | |
self, | |
in_channels: int = 16, | |
out_channels: int = 16, | |
num_attention_heads: int = 24, | |
attention_head_dim: int = 128, | |
num_layers: int = 20, | |
num_single_layers: int = 40, | |
num_refiner_layers: int = 2, | |
mlp_ratio: float = 4.0, | |
patch_size: int = 2, | |
patch_size_t: int = 1, | |
qk_norm: str = "rms_norm", | |
guidance_embeds: bool = True, | |
text_embed_dim: int = 4096, | |
pooled_projection_dim: int = 768, | |
rope_theta: float = 256.0, | |
rope_axes_dim: Tuple[int] = (16, 56, 56), | |
image_condition_type: Optional[str] = None, | |
inference_subject_driven: bool = False, | |
) -> None: | |
super().__init__() | |
supported_image_condition_types = ["latent_concat", "token_replace"] | |
if image_condition_type is not None and image_condition_type not in supported_image_condition_types: | |
raise ValueError( | |
f"Invalid `image_condition_type` ({image_condition_type}). Supported ones are: {supported_image_condition_types}" | |
) | |
inner_dim = num_attention_heads * attention_head_dim | |
out_channels = out_channels or in_channels | |
# 1. Latent and condition embedders | |
self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim) | |
self.context_embedder = HunyuanVideoTokenRefiner( | |
text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers | |
) | |
self.time_text_embed = HunyuanVideoConditionEmbedding( | |
inner_dim, pooled_projection_dim, guidance_embeds, image_condition_type | |
) | |
# 2. RoPE | |
self.rope = HunyuanVideoRotaryPosEmbed(patch_size, patch_size_t, rope_axes_dim, rope_theta) | |
# 3. Dual stream transformer blocks | |
if image_condition_type == "token_replace": | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
HunyuanVideoTokenReplaceTransformerBlock( | |
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven | |
) | |
for _ in range(num_layers) | |
] | |
) | |
else: | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
HunyuanVideoTransformerBlock( | |
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven | |
) | |
for _ in range(num_layers) | |
] | |
) | |
# 4. Single stream transformer blocks | |
if image_condition_type == "token_replace": | |
self.single_transformer_blocks = nn.ModuleList( | |
[ | |
HunyuanVideoTokenReplaceSingleTransformerBlock( | |
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven | |
) | |
for _ in range(num_single_layers) | |
] | |
) | |
else: | |
self.single_transformer_blocks = nn.ModuleList( | |
[ | |
HunyuanVideoSingleTransformerBlock( | |
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven | |
) | |
for _ in range(num_single_layers) | |
] | |
) | |
# 5. Output projection | |
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels) | |
self.gradient_checkpointing = False | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: torch.LongTensor, | |
encoder_hidden_states: torch.Tensor, | |
encoder_attention_mask: torch.Tensor, | |
pooled_projections: torch.Tensor, | |
encoder_hidden_states_condition: Union[torch.Tensor, None] = None, | |
encoder_attention_mask_condition: Union[torch.Tensor, None] = None, | |
guidance: torch.Tensor = None, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
frame_gap: Union[int, None] = None, | |
enhance_tp: bool = False, | |
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: | |
if attention_kwargs is not None: | |
attention_kwargs = attention_kwargs.copy() | |
lora_scale = attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
p, p_t = self.config.patch_size, self.config.patch_size_t | |
post_patch_num_frames = num_frames // p_t | |
post_patch_height = height // p | |
post_patch_width = width // p | |
first_frame_num_tokens = 1 * post_patch_height * post_patch_width | |
# 1. RoPE | |
image_rotary_emb = self.rope(hidden_states, frame_gap=frame_gap) | |
# 2. Conditional embeddings | |
temb, token_replace_emb = self.time_text_embed(timestep, pooled_projections, guidance) | |
hidden_states = self.x_embedder(hidden_states) | |
encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask) | |
if encoder_hidden_states_condition is not None and encoder_attention_mask_condition is not None: | |
encoder_hidden_states_condition = self.context_embedder( | |
encoder_hidden_states_condition, | |
torch.zeros_like(timestep), | |
encoder_attention_mask_condition, | |
) | |
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_condition], dim=1) | |
encoder_attention_mask = torch.cat([encoder_attention_mask, encoder_attention_mask_condition], dim=1) | |
# 3. Attention mask preparation | |
latent_sequence_length = hidden_states.shape[1] | |
condition_sequence_length = encoder_hidden_states.shape[1] | |
sequence_length = latent_sequence_length + condition_sequence_length | |
attention_mask = torch.zeros( | |
batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool | |
) # [B, N] | |
effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int) # [B,] | |
effective_sequence_length = latent_sequence_length + effective_condition_sequence_length | |
for i in range(batch_size): | |
if encoder_attention_mask_condition is not None and encoder_attention_mask_condition is not None: | |
attention_mask[i, : latent_sequence_length] = True | |
attention_mask[i, latent_sequence_length :][encoder_attention_mask[i] == 1.] = True | |
else: | |
attention_mask[i, : effective_sequence_length[i]] = True | |
# [B, 1, 1, N], for broadcasting across attention heads | |
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) | |
# 4. Transformer blocks | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
for block in self.transformer_blocks: | |
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func( | |
block, | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
attention_mask, | |
image_rotary_emb, | |
token_replace_emb, | |
first_frame_num_tokens, | |
enhance_tp, | |
) | |
for block in self.single_transformer_blocks: | |
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func( | |
block, | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
attention_mask, | |
image_rotary_emb, | |
token_replace_emb, | |
first_frame_num_tokens, | |
enhance_tp, | |
) | |
else: | |
for block in self.transformer_blocks: | |
hidden_states, encoder_hidden_states = block( | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
attention_mask, | |
image_rotary_emb, | |
token_replace_emb, | |
first_frame_num_tokens, | |
enhance_tp, | |
) | |
for block in self.single_transformer_blocks: | |
hidden_states, encoder_hidden_states = block( | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
attention_mask, | |
image_rotary_emb, | |
token_replace_emb, | |
first_frame_num_tokens, | |
enhance_tp, | |
) | |
# 5. Output projection | |
hidden_states = self.norm_out(hidden_states, temb) | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.reshape( | |
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p | |
) | |
hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7) | |
hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (hidden_states,) | |
return Transformer2DModelOutput(sample=hidden_states) |