DRA-Ctrl / models /hyvideo /transformer_hunyuan_video_i2v.py
caohy666's picture
<feat> using docker sdk.
a57579d
# Copyright 2024 The Hunyuan Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified by [Hengyuan Cao] in 2025.
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.loaders import FromOriginalModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import Attention, AttentionProcessor
from diffusers.models.cache_utils import CacheMixin
from diffusers.models.embeddings import (
CombinedTimestepTextProjEmbeddings,
PixArtAlphaTextProjection,
TimestepEmbedding,
Timesteps,
get_1d_rotary_pos_embed,
)
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle, FP32LayerNorm
from torch.nn.utils.rnn import pad_sequence
try:
from flash_attn import flash_attn_func, flash_attn_varlen_func
FLASH_ATTN_AVALIABLE = True
except:
FLASH_ATTN_AVALIABLE = True
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class HunyuanVideoAttnProcessor2_0:
def __init__(self, inference_subject_driven: bool = False):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"HunyuanVideoAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0."
)
self.inference_subject_driven = inference_subject_driven
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
enhance_tp: bool = False,
) -> torch.Tensor:
if attn.add_q_proj is None and encoder_hidden_states is not None:
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
# 1. QKV projections
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
# 2. QK normalization
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# 3. Rotational positional embeddings applied to latent stream
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
if attn.add_q_proj is None and encoder_hidden_states is not None:
query = torch.cat(
[
apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
query[:, :, -encoder_hidden_states.shape[1] :],
],
dim=2,
)
key = torch.cat(
[
apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
key[:, :, -encoder_hidden_states.shape[1] :],
],
dim=2,
)
else:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
# 4. Encoder condition QKV projection and normalization
if attn.add_q_proj is not None and encoder_hidden_states is not None:
encoder_query = attn.add_q_proj(encoder_hidden_states)
encoder_key = attn.add_k_proj(encoder_hidden_states)
encoder_value = attn.add_v_proj(encoder_hidden_states)
encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_query = attn.norm_added_q(encoder_query)
if attn.norm_added_k is not None:
encoder_key = attn.norm_added_k(encoder_key)
query = torch.cat([query, encoder_query], dim=2)
key = torch.cat([key, encoder_key], dim=2)
value = torch.cat([value, encoder_value], dim=2)
query = query.transpose(1, 2) # batch, sequence, num_head, head_dim
key = key.transpose(1, 2)
value = value.transpose(1, 2)
# 5. Attention
if FLASH_ATTN_AVALIABLE:
if attention_mask is None:
hidden_states = flash_attn_func(query, key, value, dropout=0.0)
else:
B, S, H, D = query.size()
unit_img_seq_len = 1024
unit_txt_seq_len = 144 + 252
if not (unit_img_seq_len*4+unit_txt_seq_len == S or
unit_img_seq_len*4+unit_txt_seq_len*2 == S):
raise ValueError("Get wrong sequence length.")
if S == unit_img_seq_len*4+unit_txt_seq_len:
seg_start = [0, unit_img_seq_len, unit_img_seq_len*4]
seg_end = [unit_img_seq_len, unit_img_seq_len*4, unit_img_seq_len*4+unit_txt_seq_len]
k_segs = [[0], [0, 1, 2], [1, 2]]
elif S == unit_img_seq_len*4+unit_txt_seq_len*2:
seg_start = [0, unit_img_seq_len, unit_img_seq_len*4, unit_img_seq_len*4+unit_txt_seq_len]
seg_end = [unit_img_seq_len, unit_img_seq_len*4, unit_img_seq_len*4+unit_txt_seq_len, S]
k_segs = [[0, 3], [0, 1, 2], [1,2], [0, 3]]
valid_indices = attention_mask[:, 0, 0]
q_lens = torch.tensor([u[i:j].long().sum().item() for u in valid_indices for i,j in zip(seg_start, seg_end)],
dtype=torch.int32, device=valid_indices.device)
k_lens = torch.tensor([sum([u[seg_start[seg]:seg_end[seg]].long().sum().item() for seg in segs]) for u in valid_indices for segs in k_segs],
dtype=torch.int32, device=valid_indices.device)
query = torch.cat([u[i:j][v[i:j]] for u,v in zip(query, valid_indices) for i,j in zip(seg_start, seg_end)], dim=0)
if self.inference_subject_driven or enhance_tp:
key = torch.cat([torch.cat([ torch.cat([u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]][:144], u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]][144:] + 0.6 * u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]][144:].abs().mean()], dim=0) if segs == [0, 1, 2] and seg == 2 else u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]] for seg in segs], dim=0) \
for u,v in zip(key, valid_indices) for segs in k_segs], dim=0)
else:
key = torch.cat([torch.cat([u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]] for seg in segs], dim=0) \
for u,v in zip(key, valid_indices) for segs in k_segs], dim=0)
value = torch.cat([torch.cat([u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]] for seg in segs], dim=0) \
for u,v in zip(value, valid_indices) for segs in k_segs], dim=0)
cu_seqlens_q = F.pad(q_lens.cumsum(dim=0), (1, 0)).to(torch.int32)
cu_seqlens_k = F.pad(k_lens.cumsum(dim=0), (1, 0)).to(torch.int32)
max_seqlen_q = torch.max(q_lens).item()
max_seqlen_k = torch.max(k_lens).item()
hidden_states = flash_attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k)
num_seq_parts = len(k_segs)
hidden_states = pad_sequence([
hidden_states[start: end]
for start, end in zip(cu_seqlens_q[::num_seq_parts][:-1], cu_seqlens_q[::num_seq_parts][1:])
], batch_first=True)
hidden_states = F.pad(
hidden_states,
(0, 0, 0, 0, 0, S - hidden_states.size(1), 0, 0)
)
else:
query = query.permute(0, 2, 1, 3) # batch, num_head, sequence, head_dim
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
) # use sdpa in torch may generate black output, upgrade to >=2.5.1 may solve this
hidden_states = hidden_states.transpose(1, 2)
# flatten num_head * head_dim
hidden_states = hidden_states.flatten(2, 3)
hidden_states = hidden_states.to(query.dtype)
# 6. Output projection
if encoder_hidden_states is not None:
hidden_states, encoder_hidden_states = (
hidden_states[:, : -encoder_hidden_states.shape[1]],
hidden_states[:, -encoder_hidden_states.shape[1] :],
)
if getattr(attn, "to_out", None) is not None:
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
if getattr(attn, "to_add_out", None) is not None:
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
class HunyuanVideoPatchEmbed(nn.Module):
def __init__(
self,
patch_size: Union[int, Tuple[int, int, int]] = 16,
in_chans: int = 3,
embed_dim: int = 768,
) -> None:
super().__init__()
patch_size = (patch_size, patch_size, patch_size) if isinstance(patch_size, int) else patch_size
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.proj(hidden_states)
hidden_states = hidden_states.flatten(2).transpose(1, 2) # BCFHW -> BNC
return hidden_states
class HunyuanVideoAdaNorm(nn.Module):
def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
super().__init__()
out_features = out_features or 2 * in_features
self.linear = nn.Linear(in_features, out_features)
self.nonlinearity = nn.SiLU()
def forward(
self, temb: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
temb = self.linear(self.nonlinearity(temb))
gate_msa, gate_mlp = temb.chunk(2, dim=1)
gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
return gate_msa, gate_mlp
class HunyuanVideoTokenReplaceAdaLayerNormZero(nn.Module):
def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
if norm_type == "layer_norm":
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
elif norm_type == "fp32_layer_norm":
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
else:
raise ValueError(
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
)
def forward(
self,
hidden_states: torch.Tensor,
emb: torch.Tensor,
token_replace_emb: torch.Tensor,
first_frame_num_tokens: int,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
emb = self.linear(self.silu(emb))
token_replace_emb = self.linear(self.silu(token_replace_emb))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
tr_shift_msa, tr_scale_msa, tr_gate_msa, tr_shift_mlp, tr_scale_mlp, tr_gate_mlp = token_replace_emb.chunk(
6, dim=1
)
norm_hidden_states = self.norm(hidden_states)
hidden_states_zero = (
norm_hidden_states[:, :first_frame_num_tokens] * (1 + tr_scale_msa[:, None]) + tr_shift_msa[:, None]
)
hidden_states_orig = (
norm_hidden_states[:, first_frame_num_tokens:] * (1 + scale_msa[:, None]) + shift_msa[:, None]
)
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
return (
hidden_states,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
tr_gate_msa,
tr_shift_mlp,
tr_scale_mlp,
tr_gate_mlp,
)
class HunyuanVideoTokenReplaceAdaLayerNormZeroSingle(nn.Module):
def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
if norm_type == "layer_norm":
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
else:
raise ValueError(
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
)
def forward(
self,
hidden_states: torch.Tensor,
emb: torch.Tensor,
token_replace_emb: torch.Tensor,
first_frame_num_tokens: int,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
emb = self.linear(self.silu(emb))
token_replace_emb = self.linear(self.silu(token_replace_emb))
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1)
tr_shift_msa, tr_scale_msa, tr_gate_msa = token_replace_emb.chunk(3, dim=1)
norm_hidden_states = self.norm(hidden_states)
hidden_states_zero = (
norm_hidden_states[:, :first_frame_num_tokens] * (1 + tr_scale_msa[:, None]) + tr_shift_msa[:, None]
)
hidden_states_orig = (
norm_hidden_states[:, first_frame_num_tokens:] * (1 + scale_msa[:, None]) + shift_msa[:, None]
)
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
return hidden_states, gate_msa, tr_gate_msa
class HunyuanVideoConditionEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
pooled_projection_dim: int,
guidance_embeds: bool,
image_condition_type: Optional[str] = None,
):
super().__init__()
self.image_condition_type = image_condition_type
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
self.guidance_embedder = None
if guidance_embeds:
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
def forward(
self, timestep: torch.Tensor, pooled_projection: torch.Tensor, guidance: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
pooled_projections = self.text_embedder(pooled_projection)
conditioning = timesteps_emb + pooled_projections
token_replace_emb = None
if self.image_condition_type == "token_replace":
token_replace_timestep = torch.zeros_like(timestep)
token_replace_proj = self.time_proj(token_replace_timestep)
token_replace_emb = self.timestep_embedder(token_replace_proj.to(dtype=pooled_projection.dtype))
token_replace_emb = token_replace_emb + pooled_projections
if self.guidance_embedder is not None:
guidance_proj = self.time_proj(guidance)
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
conditioning = conditioning + guidance_emb
return conditioning, token_replace_emb
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
def __init__(
self,
num_attention_heads: int,
attention_head_dim: int,
mlp_width_ratio: str = 4.0,
mlp_drop_rate: float = 0.0,
attention_bias: bool = True,
) -> None:
super().__init__()
hidden_size = num_attention_heads * attention_head_dim
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
self.attn = Attention(
query_dim=hidden_size,
cross_attention_dim=None,
heads=num_attention_heads,
dim_head=attention_head_dim,
bias=attention_bias,
)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=None,
attention_mask=attention_mask,
)
gate_msa, gate_mlp = self.norm_out(temb)
hidden_states = hidden_states + attn_output * gate_msa
ff_output = self.ff(self.norm2(hidden_states))
hidden_states = hidden_states + ff_output * gate_mlp
return hidden_states
class HunyuanVideoIndividualTokenRefiner(nn.Module):
def __init__(
self,
num_attention_heads: int,
attention_head_dim: int,
num_layers: int,
mlp_width_ratio: float = 4.0,
mlp_drop_rate: float = 0.0,
attention_bias: bool = True,
) -> None:
super().__init__()
self.refiner_blocks = nn.ModuleList(
[
HunyuanVideoIndividualTokenRefinerBlock(
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
mlp_width_ratio=mlp_width_ratio,
mlp_drop_rate=mlp_drop_rate,
attention_bias=attention_bias,
)
for _ in range(num_layers)
]
)
def forward(
self,
hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> None:
self_attn_mask = None
if attention_mask is not None:
batch_size = attention_mask.shape[0]
seq_len = attention_mask.shape[1]
attention_mask = attention_mask.to(hidden_states.device).bool()
self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
self_attn_mask[:, :, :, 0] = True
for block in self.refiner_blocks:
hidden_states = block(hidden_states, temb, self_attn_mask)
return hidden_states
class HunyuanVideoTokenRefiner(nn.Module):
def __init__(
self,
in_channels: int,
num_attention_heads: int,
attention_head_dim: int,
num_layers: int,
mlp_ratio: float = 4.0,
mlp_drop_rate: float = 0.0,
attention_bias: bool = True,
) -> None:
super().__init__()
hidden_size = num_attention_heads * attention_head_dim
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
embedding_dim=hidden_size, pooled_projection_dim=in_channels
)
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
self.token_refiner = HunyuanVideoIndividualTokenRefiner(
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
num_layers=num_layers,
mlp_width_ratio=mlp_ratio,
mlp_drop_rate=mlp_drop_rate,
attention_bias=attention_bias,
)
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.LongTensor,
attention_mask: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
if attention_mask is None:
pooled_projections = hidden_states.mean(dim=1)
else:
original_dtype = hidden_states.dtype
mask_float = attention_mask.float().unsqueeze(-1)
pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
pooled_projections = pooled_projections.to(original_dtype)
temb = self.time_text_embed(timestep, pooled_projections)
hidden_states = self.proj_in(hidden_states)
hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
return hidden_states
class HunyuanVideoRotaryPosEmbed(nn.Module):
def __init__(self, patch_size: int, patch_size_t: int, rope_dim: List[int], theta: float = 256.0) -> None:
super().__init__()
self.patch_size = patch_size
self.patch_size_t = patch_size_t
self.rope_dim = rope_dim
self.theta = theta
def forward(self, hidden_states: torch.Tensor, frame_gap: Union[int, None] = None) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = hidden_states.shape
rope_sizes = [num_frames // self.patch_size_t, height // self.patch_size, width // self.patch_size]
axes_grids = []
for i in range(3):
# Note: The following line diverges from original behaviour. We create the grid on the device, whereas
# original implementation creates it on CPU and then moves it to device. This results in numerical
# differences in layerwise debugging outputs, but visually it is the same.
grid = torch.arange(0, rope_sizes[i], device=hidden_states.device, dtype=torch.float32)
if frame_gap is not None and i == 0:
grid = grid * frame_gap
axes_grids.append(grid)
grid = torch.meshgrid(*axes_grids, indexing="ij") # [W, H, T]
grid = torch.stack(grid, dim=0) # [3, W, H, T]
freqs = []
for i in range(3):
freq = get_1d_rotary_pos_embed(self.rope_dim[i], grid[i].reshape(-1), self.theta, use_real=True)
freqs.append(freq)
freqs_cos = torch.cat([f[0] for f in freqs], dim=1) # (W * H * T, D / 2)
freqs_sin = torch.cat([f[1] for f in freqs], dim=1) # (W * H * T, D / 2)
return freqs_cos, freqs_sin
class HunyuanVideoSingleTransformerBlock(nn.Module):
def __init__(
self,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float = 4.0,
qk_norm: str = "rms_norm",
inference_subject_driven: bool = False,
) -> None:
super().__init__()
hidden_size = num_attention_heads * attention_head_dim
mlp_dim = int(hidden_size * mlp_ratio)
self.attn = Attention(
query_dim=hidden_size,
cross_attention_dim=None,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=hidden_size,
bias=True,
processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven),
qk_norm=qk_norm,
eps=1e-6,
pre_only=True,
)
self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
self.act_mlp = nn.GELU(approximate="tanh")
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
*args,
**kwargs,
) -> torch.Tensor:
text_seq_length = encoder_hidden_states.shape[1]
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
residual = hidden_states
# 1. Input normalization
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
norm_hidden_states, norm_encoder_hidden_states = (
norm_hidden_states[:, :-text_seq_length, :],
norm_hidden_states[:, -text_seq_length:, :],
)
# 2. Attention
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
)
attn_output = torch.cat([attn_output, context_attn_output], dim=1)
# 3. Modulation and residual connection
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
hidden_states = gate.unsqueeze(1) * self.proj_out(hidden_states)
hidden_states = hidden_states + residual
hidden_states, encoder_hidden_states = (
hidden_states[:, :-text_seq_length, :],
hidden_states[:, -text_seq_length:, :],
)
return hidden_states, encoder_hidden_states
class HunyuanVideoTransformerBlock(nn.Module):
def __init__(
self,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float,
qk_norm: str = "rms_norm",
inference_subject_driven: bool = False,
) -> None:
super().__init__()
hidden_size = num_attention_heads * attention_head_dim
self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
self.attn = Attention(
query_dim=hidden_size,
cross_attention_dim=None,
added_kv_proj_dim=hidden_size,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=hidden_size,
context_pre_only=False,
bias=True,
processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven),
qk_norm=qk_norm,
eps=1e-6,
)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
*args,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Input normalization
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
encoder_hidden_states, emb=temb
)
# 2. Joint attention
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
attention_mask=attention_mask,
image_rotary_emb=freqs_cis,
)
# 3. Modulation and residual connection
hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1)
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1)
norm_hidden_states = self.norm2(hidden_states)
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
# 4. Feed-forward
ff_output = self.ff(norm_hidden_states)
context_ff_output = self.ff_context(norm_encoder_hidden_states)
hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
return hidden_states, encoder_hidden_states
class HunyuanVideoTokenReplaceSingleTransformerBlock(nn.Module):
def __init__(
self,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float = 4.0,
qk_norm: str = "rms_norm",
inference_subject_driven: bool = False,
) -> None:
super().__init__()
hidden_size = num_attention_heads * attention_head_dim
mlp_dim = int(hidden_size * mlp_ratio)
self.attn = Attention(
query_dim=hidden_size,
cross_attention_dim=None,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=hidden_size,
bias=True,
processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven),
qk_norm=qk_norm,
eps=1e-6,
pre_only=True,
)
self.norm = HunyuanVideoTokenReplaceAdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
self.act_mlp = nn.GELU(approximate="tanh")
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
token_replace_emb: torch.Tensor = None,
num_tokens: int = None,
enhance_tp: bool = False,
) -> torch.Tensor:
text_seq_length = encoder_hidden_states.shape[1]
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
residual = hidden_states
# 1. Input normalization
norm_hidden_states, gate, tr_gate = self.norm(hidden_states, temb, token_replace_emb, num_tokens)
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
norm_hidden_states, norm_encoder_hidden_states = (
norm_hidden_states[:, :-text_seq_length, :],
norm_hidden_states[:, -text_seq_length:, :],
)
# 2. Attention
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
enhance_tp=enhance_tp,
)
attn_output = torch.cat([attn_output, context_attn_output], dim=1)
# 3. Modulation and residual connection
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
proj_output = self.proj_out(hidden_states)
hidden_states_zero = proj_output[:, :num_tokens] * tr_gate.unsqueeze(1)
hidden_states_orig = proj_output[:, num_tokens:] * gate.unsqueeze(1)
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
hidden_states = hidden_states + residual
hidden_states, encoder_hidden_states = (
hidden_states[:, :-text_seq_length, :],
hidden_states[:, -text_seq_length:, :],
)
return hidden_states, encoder_hidden_states
class HunyuanVideoTokenReplaceTransformerBlock(nn.Module):
def __init__(
self,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float,
qk_norm: str = "rms_norm",
inference_subject_driven: bool = False,
) -> None:
super().__init__()
hidden_size = num_attention_heads * attention_head_dim
self.norm1 = HunyuanVideoTokenReplaceAdaLayerNormZero(hidden_size, norm_type="layer_norm")
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
self.attn = Attention(
query_dim=hidden_size,
cross_attention_dim=None,
added_kv_proj_dim=hidden_size,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=hidden_size,
context_pre_only=False,
bias=True,
processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven),
qk_norm=qk_norm,
eps=1e-6,
)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
token_replace_emb: torch.Tensor = None,
num_tokens: int = None,
enhance_tp: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Input normalization
(
norm_hidden_states,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
tr_gate_msa,
tr_shift_mlp,
tr_scale_mlp,
tr_gate_mlp,
) = self.norm1(hidden_states, temb, token_replace_emb, num_tokens)
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
encoder_hidden_states, emb=temb
)
# 2. Joint attention
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
attention_mask=attention_mask,
image_rotary_emb=freqs_cis,
enhance_tp=enhance_tp,
)
# 3. Modulation and residual connection
hidden_states_zero = hidden_states[:, :num_tokens] + attn_output[:, :num_tokens] * tr_gate_msa.unsqueeze(1)
hidden_states_orig = hidden_states[:, num_tokens:] + attn_output[:, num_tokens:] * gate_msa.unsqueeze(1)
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1)
norm_hidden_states = self.norm2(hidden_states)
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
hidden_states_zero = norm_hidden_states[:, :num_tokens] * (1 + tr_scale_mlp[:, None]) + tr_shift_mlp[:, None]
hidden_states_orig = norm_hidden_states[:, num_tokens:] * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
norm_hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
# 4. Feed-forward
ff_output = self.ff(norm_hidden_states)
context_ff_output = self.ff_context(norm_encoder_hidden_states)
hidden_states_zero = hidden_states[:, :num_tokens] + ff_output[:, :num_tokens] * tr_gate_mlp.unsqueeze(1)
hidden_states_orig = hidden_states[:, num_tokens:] + ff_output[:, num_tokens:] * gate_mlp.unsqueeze(1)
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
return hidden_states, encoder_hidden_states
class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
r"""
A Transformer model for video-like data used in [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo).
Args:
in_channels (`int`, defaults to `16`):
The number of channels in the input.
out_channels (`int`, defaults to `16`):
The number of channels in the output.
num_attention_heads (`int`, defaults to `24`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`, defaults to `128`):
The number of channels in each head.
num_layers (`int`, defaults to `20`):
The number of layers of dual-stream blocks to use.
num_single_layers (`int`, defaults to `40`):
The number of layers of single-stream blocks to use.
num_refiner_layers (`int`, defaults to `2`):
The number of layers of refiner blocks to use.
mlp_ratio (`float`, defaults to `4.0`):
The ratio of the hidden layer size to the input size in the feedforward network.
patch_size (`int`, defaults to `2`):
The size of the spatial patches to use in the patch embedding layer.
patch_size_t (`int`, defaults to `1`):
The size of the tmeporal patches to use in the patch embedding layer.
qk_norm (`str`, defaults to `rms_norm`):
The normalization to use for the query and key projections in the attention layers.
guidance_embeds (`bool`, defaults to `True`):
Whether to use guidance embeddings in the model.
text_embed_dim (`int`, defaults to `4096`):
Input dimension of text embeddings from the text encoder.
pooled_projection_dim (`int`, defaults to `768`):
The dimension of the pooled projection of the text embeddings.
rope_theta (`float`, defaults to `256.0`):
The value of theta to use in the RoPE layer.
rope_axes_dim (`Tuple[int]`, defaults to `(16, 56, 56)`):
The dimensions of the axes to use in the RoPE layer.
image_condition_type (`str`, *optional*, defaults to `None`):
The type of image conditioning to use. If `None`, no image conditioning is used. If `latent_concat`, the
image is concatenated to the latent stream. If `token_replace`, the image is used to replace first-frame
tokens in the latent stream and apply conditioning.
"""
_supports_gradient_checkpointing = True
_skip_layerwise_casting_patterns = ["x_embedder", "context_embedder", "norm"]
_no_split_modules = [
"HunyuanVideoTransformerBlock",
"HunyuanVideoSingleTransformerBlock",
"HunyuanVideoPatchEmbed",
"HunyuanVideoTokenRefiner",
]
@register_to_config
def __init__(
self,
in_channels: int = 16,
out_channels: int = 16,
num_attention_heads: int = 24,
attention_head_dim: int = 128,
num_layers: int = 20,
num_single_layers: int = 40,
num_refiner_layers: int = 2,
mlp_ratio: float = 4.0,
patch_size: int = 2,
patch_size_t: int = 1,
qk_norm: str = "rms_norm",
guidance_embeds: bool = True,
text_embed_dim: int = 4096,
pooled_projection_dim: int = 768,
rope_theta: float = 256.0,
rope_axes_dim: Tuple[int] = (16, 56, 56),
image_condition_type: Optional[str] = None,
inference_subject_driven: bool = False,
) -> None:
super().__init__()
supported_image_condition_types = ["latent_concat", "token_replace"]
if image_condition_type is not None and image_condition_type not in supported_image_condition_types:
raise ValueError(
f"Invalid `image_condition_type` ({image_condition_type}). Supported ones are: {supported_image_condition_types}"
)
inner_dim = num_attention_heads * attention_head_dim
out_channels = out_channels or in_channels
# 1. Latent and condition embedders
self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
self.context_embedder = HunyuanVideoTokenRefiner(
text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
)
self.time_text_embed = HunyuanVideoConditionEmbedding(
inner_dim, pooled_projection_dim, guidance_embeds, image_condition_type
)
# 2. RoPE
self.rope = HunyuanVideoRotaryPosEmbed(patch_size, patch_size_t, rope_axes_dim, rope_theta)
# 3. Dual stream transformer blocks
if image_condition_type == "token_replace":
self.transformer_blocks = nn.ModuleList(
[
HunyuanVideoTokenReplaceTransformerBlock(
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven
)
for _ in range(num_layers)
]
)
else:
self.transformer_blocks = nn.ModuleList(
[
HunyuanVideoTransformerBlock(
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven
)
for _ in range(num_layers)
]
)
# 4. Single stream transformer blocks
if image_condition_type == "token_replace":
self.single_transformer_blocks = nn.ModuleList(
[
HunyuanVideoTokenReplaceSingleTransformerBlock(
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven
)
for _ in range(num_single_layers)
]
)
else:
self.single_transformer_blocks = nn.ModuleList(
[
HunyuanVideoSingleTransformerBlock(
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven
)
for _ in range(num_single_layers)
]
)
# 5. Output projection
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
self.gradient_checkpointing = False
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.LongTensor,
encoder_hidden_states: torch.Tensor,
encoder_attention_mask: torch.Tensor,
pooled_projections: torch.Tensor,
encoder_hidden_states_condition: Union[torch.Tensor, None] = None,
encoder_attention_mask_condition: Union[torch.Tensor, None] = None,
guidance: torch.Tensor = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
frame_gap: Union[int, None] = None,
enhance_tp: bool = False,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p, p_t = self.config.patch_size, self.config.patch_size_t
post_patch_num_frames = num_frames // p_t
post_patch_height = height // p
post_patch_width = width // p
first_frame_num_tokens = 1 * post_patch_height * post_patch_width
# 1. RoPE
image_rotary_emb = self.rope(hidden_states, frame_gap=frame_gap)
# 2. Conditional embeddings
temb, token_replace_emb = self.time_text_embed(timestep, pooled_projections, guidance)
hidden_states = self.x_embedder(hidden_states)
encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask)
if encoder_hidden_states_condition is not None and encoder_attention_mask_condition is not None:
encoder_hidden_states_condition = self.context_embedder(
encoder_hidden_states_condition,
torch.zeros_like(timestep),
encoder_attention_mask_condition,
)
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_condition], dim=1)
encoder_attention_mask = torch.cat([encoder_attention_mask, encoder_attention_mask_condition], dim=1)
# 3. Attention mask preparation
latent_sequence_length = hidden_states.shape[1]
condition_sequence_length = encoder_hidden_states.shape[1]
sequence_length = latent_sequence_length + condition_sequence_length
attention_mask = torch.zeros(
batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool
) # [B, N]
effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int) # [B,]
effective_sequence_length = latent_sequence_length + effective_condition_sequence_length
for i in range(batch_size):
if encoder_attention_mask_condition is not None and encoder_attention_mask_condition is not None:
attention_mask[i, : latent_sequence_length] = True
attention_mask[i, latent_sequence_length :][encoder_attention_mask[i] == 1.] = True
else:
attention_mask[i, : effective_sequence_length[i]] = True
# [B, 1, 1, N], for broadcasting across attention heads
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)
# 4. Transformer blocks
if torch.is_grad_enabled() and self.gradient_checkpointing:
for block in self.transformer_blocks:
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
block,
hidden_states,
encoder_hidden_states,
temb,
attention_mask,
image_rotary_emb,
token_replace_emb,
first_frame_num_tokens,
enhance_tp,
)
for block in self.single_transformer_blocks:
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
block,
hidden_states,
encoder_hidden_states,
temb,
attention_mask,
image_rotary_emb,
token_replace_emb,
first_frame_num_tokens,
enhance_tp,
)
else:
for block in self.transformer_blocks:
hidden_states, encoder_hidden_states = block(
hidden_states,
encoder_hidden_states,
temb,
attention_mask,
image_rotary_emb,
token_replace_emb,
first_frame_num_tokens,
enhance_tp,
)
for block in self.single_transformer_blocks:
hidden_states, encoder_hidden_states = block(
hidden_states,
encoder_hidden_states,
temb,
attention_mask,
image_rotary_emb,
token_replace_emb,
first_frame_num_tokens,
enhance_tp,
)
# 5. Output projection
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p
)
hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7)
hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (hidden_states,)
return Transformer2DModelOutput(sample=hidden_states)