DRA-Ctrl / app.py
caohy666's picture
<fix> fix a model loading bug.
e7e90f8
import os
import sys
import torch
import diffusers
import transformers
import argparse
import peft
import copy
import cv2
import spaces
import gc
import gradio as gr
import numpy as np
from flash_attn import flash_attn_func
from peft import LoraConfig
from omegaconf import OmegaConf
from safetensors.torch import safe_open
from PIL import Image, ImageDraw, ImageFilter
from huggingface_hub import hf_hub_download
from transformers import pipeline
from models import HunyuanVideoTransformer3DModel
from pipelines import HunyuanVideoImageToVideoPipeline
header = """
# DRA-Ctrl Gradio App
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://arxiv.org/pdf/2505.23325"><img src="https://img.shields.io/badge/ariXv-Paper-A42C25.svg" alt="arXiv"></a>
<a href="https://arxiv.org/abs/2505.23325"><img src="https://img.shields.io/badge/ariXv-Page-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/Kunbyte/DRA-Ctrl"><img src="https://img.shields.io/badge/🤗-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://huggingface.co/spaces/Kunbyte/DRA-Ctrl"><img src="https://img.shields.io/badge/🤗-Space-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://github.com/Kunbyte-AI/DRA-Ctrl"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
<a href="https://dra-ctrl-2025.github.io/DRA-Ctrl/"><img src="https://img.shields.io/badge/Project-Page-blue" alt="Project"></a>
</div>
"""
notice = """
For easier testing, in spatially-aligned image generation tasks, when passing the condition image to `gradio_app`,
there's no need to manually input edge maps, depth maps, or other condition images - only the original image is required.
The corresponding condition images will be automatically extracted.
"""
def init_basemodel():
global transformer, scheduler, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, image_processor, pipe, current_task
pipe = None
current_task = None
# init models
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = torch.bfloat16
transformer = HunyuanVideoTransformer3DModel.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="transformer",
inference_subject_driven=False,
low_cpu_mem_usage=True).requires_grad_(False).to(device, dtype=weight_dtype)
torch.cuda.empty_cache()
gc.collect()
scheduler = diffusers.FlowMatchEulerDiscreteScheduler()
vae = diffusers.AutoencoderKLHunyuanVideo.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="vae",
low_cpu_mem_usage=True).requires_grad_(False).to(device, dtype=weight_dtype)
torch.cuda.empty_cache()
gc.collect()
text_encoder = transformers.LlavaForConditionalGeneration.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="text_encoder",
low_cpu_mem_usage=True).requires_grad_(False).to(device, dtype=weight_dtype)
torch.cuda.empty_cache()
gc.collect()
text_encoder_2 = transformers.CLIPTextModel.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="text_encoder_2",
low_cpu_mem_usage=True).requires_grad_(False).to(device, dtype=weight_dtype)
torch.cuda.empty_cache()
gc.collect()
tokenizer = transformers.AutoTokenizer.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="tokenizer")
tokenizer_2 = transformers.CLIPTokenizer.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="tokenizer_2")
image_processor = transformers.CLIPImageProcessor.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="image_processor")
vae.enable_tiling()
vae.enable_slicing()
pipe = HunyuanVideoImageToVideoPipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
vae=vae,
scheduler=copy.deepcopy(scheduler),
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
image_processor=image_processor,
)
@spaces.GPU
def process_image_and_text(condition_image, target_prompt, condition_image_prompt, task, random_seed, num_steps, inpainting, fill_x1, fill_x2, fill_y1, fill_y2):
# set up the model
global pipe, current_task, transformer
if current_task != task:
if current_task is None:
# insert LoRA
lora_config = LoraConfig(
r=16,
lora_alpha=16,
init_lora_weights="gaussian",
target_modules=[
'attn.to_k', 'attn.to_q', 'attn.to_v', 'attn.to_out.0',
'attn.add_k_proj', 'attn.add_q_proj', 'attn.add_v_proj', 'attn.to_add_out',
'ff.net.0.proj', 'ff.net.2',
'ff_context.net.0.proj', 'ff_context.net.2',
'norm1_context.linear', 'norm1.linear',
'norm.linear', 'proj_mlp', 'proj_out',
]
)
transformer.add_adapter(lora_config)
else:
def restore_forward(module):
def restored_forward(self, x, *args, **kwargs):
return module.original_forward(x, *args, **kwargs)
return restored_forward.__get__(module, type(module))
for n, m in transformer.named_modules():
if isinstance(m, peft.tuners.lora.layer.Linear):
m.forward = restore_forward(m)
current_task = task
# hack LoRA forward
def create_hacked_forward(module):
if not hasattr(module, 'original_forward'):
module.original_forward = module.forward
lora_forward = module.forward
non_lora_forward = module.base_layer.forward
img_sequence_length = int((512 / 8 / 2) ** 2)
encoder_sequence_length = 144 + 252 # encoder sequence: 144 img 252 txt
num_imgs = 4
num_generated_imgs = 3
num_encoder_sequences = 2 if task in ['subject_driven', 'style_transfer'] else 1
def hacked_lora_forward(self, x, *args, **kwargs):
if x.shape[1] == img_sequence_length * num_imgs and len(x.shape) > 2:
return torch.cat((
lora_forward(x[:, :-img_sequence_length*num_generated_imgs], *args, **kwargs),
non_lora_forward(x[:, -img_sequence_length*num_generated_imgs:], *args, **kwargs)
), dim=1)
elif x.shape[1] == encoder_sequence_length * num_encoder_sequences or x.shape[1] == encoder_sequence_length:
return lora_forward(x, *args, **kwargs)
elif x.shape[1] == img_sequence_length * num_imgs + encoder_sequence_length * num_encoder_sequences:
return torch.cat((
lora_forward(x[:, :(num_imgs - num_generated_imgs)*img_sequence_length], *args, **kwargs),
non_lora_forward(x[:, (num_imgs - num_generated_imgs)*img_sequence_length:-num_encoder_sequences*encoder_sequence_length], *args, **kwargs),
lora_forward(x[:, -num_encoder_sequences*encoder_sequence_length:], *args, **kwargs)
), dim=1)
elif x.shape[1] == 3072:
return non_lora_forward(x, *args, **kwargs)
else:
raise ValueError(
f"hacked_lora_forward receives unexpected sequence length: {x.shape[1]}, input shape: {x.shape}!"
)
return hacked_lora_forward.__get__(module, type(module))
for n, m in transformer.named_modules():
if isinstance(m, peft.tuners.lora.layer.Linear):
m.forward = create_hacked_forward(m)
# load LoRA weights
model_root = hf_hub_download(
repo_id="Kunbyte/DRA-Ctrl",
filename=f"{task}.safetensors",
resume_download=True)
try:
with safe_open(model_root, framework="pt") as f:
lora_weights = {}
for k in f.keys():
param = f.get_tensor(k)
if k.endswith(".weight"):
k = k.replace('.weight', '.default.weight')
lora_weights[k] = param
transformer.load_state_dict(lora_weights, strict=False)
except Exception as e:
raise ValueError(f'{e}')
transformer.requires_grad_(False)
# start generation
c_txt = None if condition_image_prompt == "" else condition_image_prompt
c_img = condition_image.resize((512, 512))
t_txt = target_prompt
if task not in ['subject_driven', 'style_transfer']:
if task == "canny":
def get_canny_edge(img):
img_np = np.array(img)
img_gray = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(img_gray, 100, 200)
edges_tmp = Image.fromarray(edges).convert("RGB")
edges[edges == 0] = 128
return Image.fromarray(edges).convert("RGB")
c_img = get_canny_edge(c_img)
elif task == "coloring":
c_img = (
c_img.resize((512, 512))
.convert("L")
.convert("RGB")
)
elif task == "deblurring":
blur_radius = 10
c_img = (
c_img.convert("RGB")
.filter(ImageFilter.GaussianBlur(blur_radius))
.resize((512, 512))
.convert("RGB")
)
elif task == "depth":
def get_depth_map(img):
from transformers import pipeline
depth_pipe = pipeline(
task="depth-estimation",
model="LiheYoung/depth-anything-small-hf",
device="cpu",
)
return depth_pipe(img)["depth"].convert("RGB").resize((512, 512))
c_img = get_depth_map(c_img)
k = (255 - 128) / 255
b = 128
c_img = c_img.point(lambda x: k * x + b)
elif task == "depth_pred":
c_img = c_img
elif task == "fill":
c_img = c_img.resize((512, 512)).convert("RGB")
x1, x2 = fill_x1, fill_x2
y1, y2 = fill_y1, fill_y2
mask = Image.new("L", (512, 512), 0)
draw = ImageDraw.Draw(mask)
draw.rectangle((x1, y1, x2, y2), fill=255)
if inpainting:
mask = Image.eval(mask, lambda a: 255 - a)
c_img = Image.composite(
c_img,
Image.new("RGB", (512, 512), (255, 255, 255)),
mask
)
c_img = Image.composite(
c_img,
Image.new("RGB", (512, 512), (128, 128, 128)),
mask
)
elif task == "sr":
c_img = c_img.resize((int(512 / 4), int(512 / 4))).convert("RGB")
c_img = c_img.resize((512, 512))
gen_img = pipe(
image=c_img,
prompt=[t_txt.strip()],
prompt_condition=[c_txt.strip()] if c_txt is not None else None,
prompt_2=[t_txt],
height=512,
width=512,
num_frames=5,
num_inference_steps=num_steps,
guidance_scale=6.0,
num_videos_per_prompt=1,
generator=torch.Generator(device=pipe.transformer.device).manual_seed(random_seed),
output_type='pt',
image_embed_interleave=4,
frame_gap=48,
mixup=True,
mixup_num_imgs=2,
enhance_tp=task in ['subject_driven'],
).frames
output_images = []
for i in range(10):
out = gen_img[:, i:i+1, :, :, :]
out = out.squeeze(0).squeeze(0).cpu().to(torch.float32).numpy()
out = np.transpose(out, (1, 2, 0))
out = (out * 255).astype(np.uint8)
out = Image.fromarray(out)
output_images.append(out)
return output_images[1:] + [output_images[0]]
def create_app():
with gr.Blocks() as app:
gr.Markdown(header, elem_id="header")
with gr.Row(equal_height=False):
with gr.Column(variant="panel", elem_classes="inputPanel"):
condition_image = gr.Image(
type="pil", label="Condition Image", width=300, elem_id="input"
)
task = gr.Radio(
[
("Subject-driven Image Generation", "subject_driven"),
("Canny-to-Image", "canny"),
("Colorization", "coloring"),
("Deblurring", "deblurring"),
("Depth-to-Image", "depth"),
("Depth Prediction", "depth_pred"),
("In/Out-Painting", "fill"),
("Super-Resolution", "sr"),
("Style Transfer", "style_transfer")
],
label="Task Selection",
value="subject_driven",
interactive=True,
elem_id="task_selection"
)
gr.Markdown(notice, elem_id="notice")
target_prompt = gr.Textbox(lines=2, label="Target Prompt", elem_id="tp")
condition_image_prompt = gr.Textbox(lines=2, label="Condition Image Prompt (Only required by Subject-driven Image Generation and Style Transfer tasks)", elem_id="cp")
random_seed = gr.Number(label="Random Seed", precision=0, value=0, elem_id="seed")
num_steps = gr.Number(label="Diffusion Inference Steps", precision=0, value=50, elem_id="steps")
inpainting = gr.Checkbox(label="Inpainting", value=False, elem_id="inpainting")
fill_x1 = gr.Number(label="In/Out-painting Box Left Boundary", precision=0, value=128, elem_id="fill_x1")
fill_x2 = gr.Number(label="In/Out-painting Box Right Boundary", precision=0, value=384, elem_id="fill_x2")
fill_y1 = gr.Number(label="In/Out-painting Box Top Boundary", precision=0, value=128, elem_id="fill_y1")
fill_y2 = gr.Number(label="In/Out-painting Box Bottom Boundary", precision=0, value=384, elem_id="fill_y2")
submit_btn = gr.Button("Run", elem_id="submit_btn")
with gr.Column(variant="panel", elem_classes="outputPanel"):
# output_image = gr.Image(type="pil", elem_id="output")
output_images = gr.Gallery(
label="Output Images",
show_label=True,
elem_id="output_gallery",
columns=1,
rows=10,
object_fit="contain",
height="auto",
)
submit_btn.click(
fn=process_image_and_text,
inputs=[condition_image, target_prompt, condition_image_prompt, task, random_seed, num_steps, inpainting, fill_x1, fill_x2, fill_y1, fill_y2],
outputs=output_images,
)
return app
if __name__ == "__main__":
init_basemodel()
create_app().launch(debug=True, ssr_mode=False, max_threads=1)