Spaces:
Runtime error
Runtime error
pip install diffusers transformers torch numpy scipy gradio datasets | |
pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio===0.9.1 -f https://download.pytorch.org/whl/torch_stable.html | |
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig | |
import numpy as np | |
from scipy.special import softmax | |
import gradio as gr | |
torch.cuda.is_available() | |
model_path = "cardiffnlp/twitter-roberta-base-sentiment-latest" | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
config = AutoConfig.from_pretrained(model_path) | |
model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
def sentiment_analysis(text): | |
encoded_input = tokenizer(text, return_tensors='pt') | |
output = model(**encoded_input) | |
scores_ = output[0][0].detach().numpy() | |
scores_ = softmax(scores_) | |
labels = ['Negative', 'Neutral', 'Positive'] | |
scores = {l: float(s) for (l, s) in zip(labels, scores_)} | |
return scores | |
demo = gr.Interface( | |
theme=gr.themes.Base(), | |
fn=sentiment_analysis, | |
inputs=gr.Textbox(placeholder="Write your text here..."), | |
outputs="label", | |
examples=[ | |
["I'm thrilled about the job offer!"], | |
["The weather today is absolutely beautiful."], | |
["I had a fantastic time at the concert last night."], | |
["I'm so frustrated with this software glitch."], | |
["The customer service was terrible at the store."], | |
["I'm really disappointed with the quality of this product."] | |
], | |
title='Sentiment Analysis App', | |
description='This app classifies a positive, neutral, or negative sentiment.' | |
) | |
demo.launch() | |