Spaces:
Restarting
on
Zero
Restarting
on
Zero
File size: 17,747 Bytes
7fe98ab de0b990 d61a0bc d8bb216 6c12bfc 4857935 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d191aca 4857935 3d79b08 c4fd703 41c24bd 626b672 2f5046d d8bb216 4857935 d8bb216 626b672 d8bb216 4857935 4d68dfd 4857935 41c24bd 4d68dfd 4857935 41c24bd b826ffc 41c24bd b826ffc 41c24bd b826ffc 4857935 4d68dfd 573e35e 89c6834 0fb9415 89c6834 4857935 626b672 d8bb216 41c24bd d8bb216 d985229 4857935 3d79b08 4857935 3d79b08 4857935 3d79b08 89c6834 4857935 89c6834 4857935 d8bb216 41c24bd d985229 d8bb216 4857935 d8bb216 6c12bfc 626b672 d985229 4857935 d985229 d8bb216 626b672 d8bb216 626b672 6c12bfc 4857935 d8bb216 4857935 b826ffc 89c6834 d8bb216 41c24bd d8bb216 41c24bd d8bb216 41c24bd d8bb216 b826ffc d8bb216 b826ffc 41c24bd b826ffc 41c24bd b826ffc 41c24bd b826ffc 626b672 4857935 cbdec18 4857935 b4e4e06 cbdec18 4857935 b4e4e06 cbdec18 b4e4e06 4857935 cbdec18 626b672 d8bb216 4857935 d8bb216 6c12bfc d8bb216 d985229 d8bb216 6c12bfc 4857935 d8bb216 4857935 d8bb216 4857935 d8bb216 626b672 4857935 d8bb216 4857935 d8bb216 f62fc75 4857935 2eea82e 89c6834 2eea82e de0b990 4857935 89c6834 6c12bfc 89c6834 4857935 3d79b08 d985229 96af44f 89c6834 d985229 89c6834 3d79b08 4857935 6c12bfc 89c6834 4857935 89c6834 4857935 573e35e 89c6834 4857935 4d68dfd d8bb216 96af44f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import gradio as gr
import torch
import spaces
import numpy as np
import random
import os
import yaml
import requests
import shutil
from pathlib import Path
import imageio
import tempfile
from PIL import Image
from huggingface_hub import hf_hub_download
from inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
get_device,
calculate_padding,
load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
# Configuration
config_file_path = "configs/ltxv-13b-0.9.7-distilled.yaml"
with open(config_file_path, "r") as file:
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
LTX_REPO = "Lightricks/LTX-Video"
MAX_IMAGE_SIZE = 1024
MAX_NUM_FRAMES = 257
FPS = 24.0
# Default values
DEFAULT_NEGATIVE_PROMPT = "worst quality, inconsistent motion, blurry, jittery, distorted"
DEFAULT_GUIDANCE_SCALE = PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0)
DEFAULT_SEED = 42
DEFAULT_IMPROVE_TEXTURE = True
TARGET_FIXED_SIDE = 768
# Global variables for loaded models
pipeline_instance = None
latent_upsampler_instance = None
models_dir = "downloaded_models_gradio_cpu_init"
Path(models_dir).mkdir(parents=True, exist_ok=True)
def video_to_url(video_path):
"""
Uploads a video to a temporary hosting service and returns its URL.
"""
try:
url = 'https://uguu.se/upload'
with open(video_path, 'rb') as f:
files = {'files[]': (os.path.basename(video_path), f)}
response = requests.post(url, files=files)
response_json = response.json()
return response_json['files'][0]['url']
except FileNotFoundError:
return "Error: File not found. Please check the video path."
except Exception as e:
return f"An error occurred: {e}"
def calculate_new_dimensions(orig_w, orig_h):
"""
Calculates new dimensions for height and width based on original media dimensions.
Rules:
1. If any dimension > 1024, resize so max dimension is 1024, maintaining aspect ratio.
2. Then ensure both dimensions are multiples of 32 by rounding to the nearest multiple.
3. Ensure dimensions are within [256, 1024].
"""
if orig_w == 0 or orig_h == 0:
return TARGET_FIXED_SIDE, TARGET_FIXED_SIDE
# Step 1: Handle dimensions > 1024
new_w, new_h = orig_w, orig_h
if max(orig_w, orig_h) > 1024:
max_dim = max(orig_w, orig_h)
scale = 1024 / max_dim
new_w = int(orig_w * scale)
new_h = int(orig_h * scale)
# Step 2: Round to nearest multiples of 32
def round_to_multiple(x, multiple=32):
return round(x / multiple) * multiple
new_w = round_to_multiple(new_w)
new_h = round_to_multiple(new_h)
# Step 3: Ensure within bounds
new_w = max(256, min(new_w, MAX_IMAGE_SIZE))
new_h = max(256, min(new_h, MAX_IMAGE_SIZE))
return new_h, new_w
def resize_and_squash_image(image_path, target_width, target_height):
"""
Resize and potentially squash/stretch an image to the exact target dimensions.
This ensures no cropping will be needed later.
"""
img = Image.open(image_path)
# Resize to exact dimensions, possibly distorting aspect ratio
img = img.resize((target_width, target_height), Image.LANCZOS)
# Save to temporary file
temp_path = os.path.join(tempfile.gettempdir(), f"resized_{os.path.basename(image_path)}")
img.save(temp_path)
return temp_path
def initialize_models():
"""Initialize and download models"""
global pipeline_instance, latent_upsampler_instance
print("Downloading models (if not present)...")
distilled_model_actual_path = hf_hub_download(
repo_id=LTX_REPO,
filename=PIPELINE_CONFIG_YAML["checkpoint_path"],
local_dir=models_dir,
local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
spatial_upscaler_actual_path = hf_hub_download(
repo_id=LTX_REPO,
filename=PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
local_dir=models_dir,
local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
print("Creating LTX Video pipeline on CPU...")
pipeline_instance = create_ltx_video_pipeline(
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
precision=PIPELINE_CONFIG_YAML["precision"],
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
sampler=PIPELINE_CONFIG_YAML["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
)
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
print("Creating latent upsampler on CPU...")
latent_upsampler_instance = create_latent_upsampler(
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
device="cpu"
)
target_inference_device = "cuda"
print(f"Target inference device: {target_inference_device}")
pipeline_instance.to(target_inference_device)
if latent_upsampler_instance:
latent_upsampler_instance.to(target_inference_device)
@spaces.GPU(duration=60)
def generate(prompt, input_image_url=None, final_image_url=None, duration_ui=2, progress=gr.Progress(track_tqdm=True)):
"""Generate video from image(s) and prompt"""
# Validate input - at least one image must be provided
if input_image_url is None and final_image_url is None:
raise gr.Error("Please provide at least one input image (either first frame or last frame)")
input_image_filepath = input_image_url
final_image_filepath = final_image_url
# Set default values
negative_prompt = DEFAULT_NEGATIVE_PROMPT
seed_ui = DEFAULT_SEED
randomize_seed = True
ui_guidance_scale = DEFAULT_GUIDANCE_SCALE
improve_texture_flag = DEFAULT_IMPROVE_TEXTURE
if randomize_seed:
seed_ui = random.randint(0, 2**32 - 1)
seed_everething(int(seed_ui))
# Calculate target frames
target_frames_ideal = duration_ui * FPS
target_frames_rounded = max(1, round(target_frames_ideal))
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
# Calculate dimensions based on the provided image(s)
if input_image_filepath:
try:
img = Image.open(input_image_filepath)
orig_w, orig_h = img.size
actual_height, actual_width = calculate_new_dimensions(orig_w, orig_h)
except Exception as e:
print(f"Error processing input image: {e}")
if final_image_filepath:
try:
img = Image.open(final_image_filepath)
orig_w, orig_h = img.size
actual_height, actual_width = calculate_new_dimensions(orig_w, orig_h)
except Exception as e:
print(f"Error processing final image: {e}")
actual_height, actual_width = TARGET_FIXED_SIDE, TARGET_FIXED_SIDE
else:
actual_height, actual_width = TARGET_FIXED_SIDE, TARGET_FIXED_SIDE
elif final_image_filepath:
try:
img = Image.open(final_image_filepath)
orig_w, orig_h = img.size
actual_height, actual_width = calculate_new_dimensions(orig_w, orig_h)
except Exception as e:
print(f"Error processing final image: {e}")
actual_height, actual_width = TARGET_FIXED_SIDE, TARGET_FIXED_SIDE
else:
actual_height, actual_width = TARGET_FIXED_SIDE, TARGET_FIXED_SIDE
# Since we're handling all resizing ourselves, we don't need padding
height_padded = actual_height
width_padded = actual_width
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
# Prepare call arguments
call_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height_padded,
"width": width_padded,
"num_frames": num_frames_padded,
"frame_rate": int(FPS),
"generator": torch.Generator(device="cuda").manual_seed(int(seed_ui)),
"output_type": "pt",
"conditioning_items": None,
"media_items": None,
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
"image_cond_noise_scale": 0.15,
"is_video": True,
"vae_per_channel_normalize": True,
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
"offload_to_cpu": False,
"enhance_prompt": False,
}
# Set skip layer strategy
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
if stg_mode_str.lower() in ["stg_av", "attention_values"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
elif stg_mode_str.lower() in ["stg_r", "residual"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
# Add image conditioning if provided
conditioning_items = []
# Add initial frame conditioning if provided
if input_image_filepath:
try:
# First resize and squash the image to the exact dimensions we want
resized_image_path = resize_and_squash_image(input_image_filepath, actual_width, actual_height)
# Now load this pre-resized image with load_image_to_tensor_with_resize_and_crop
# Since it's already the correct size, the "crop" part will be a no-op
media_tensor = load_image_to_tensor_with_resize_and_crop(
resized_image_path, actual_height, actual_width
)
# Clean up temporary file
if os.path.exists(resized_image_path):
os.remove(resized_image_path)
media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
conditioning_items.append(ConditioningItem(media_tensor.to("cuda"), 0, 1.0))
except Exception as e:
print(f"Error loading initial image: {e}")
raise gr.Error(f"Could not load initial image: {e}")
# Add final frame conditioning if provided
if final_image_filepath:
try:
# First resize and squash the final image to match the initial image dimensions
resized_final_path = resize_and_squash_image(
final_image_filepath, actual_width, actual_height
)
# Now load this pre-resized image with load_image_to_tensor_with_resize_and_crop
# Since it's already the correct size, the "crop" part will be a no-op
final_media_tensor = load_image_to_tensor_with_resize_and_crop(
resized_final_path, actual_height, actual_width
)
# Clean up temporary file
if os.path.exists(resized_final_path):
os.remove(resized_final_path)
final_media_tensor = torch.nn.functional.pad(final_media_tensor, padding_values)
conditioning_items.append(ConditioningItem(final_media_tensor.to("cuda"), num_frames_padded - 1, 1.0))
except Exception as e:
print(f"Error loading final image: {e}")
raise gr.Error(f"Could not load final image: {e}")
if conditioning_items:
call_kwargs["conditioning_items"] = conditioning_items
# Generate video
active_latent_upsampler = latent_upsampler_instance if improve_texture_flag else None
if improve_texture_flag and active_latent_upsampler:
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
first_pass_args["guidance_scale"] = float(ui_guidance_scale)
first_pass_args.pop("num_inference_steps", None)
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
second_pass_args["guidance_scale"] = float(ui_guidance_scale)
second_pass_args.pop("num_inference_steps", None)
multi_scale_call_kwargs = call_kwargs.copy()
multi_scale_call_kwargs.update({
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
"first_pass": first_pass_args,
"second_pass": second_pass_args,
})
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
else:
single_pass_call_kwargs = call_kwargs.copy()
first_pass_config_from_yaml = PIPELINE_CONFIG_YAML.get("first_pass", {})
single_pass_call_kwargs.update({
"timesteps": first_pass_config_from_yaml.get("timesteps"),
"guidance_scale": float(ui_guidance_scale),
"stg_scale": first_pass_config_from_yaml.get("stg_scale"),
"rescaling_scale": first_pass_config_from_yaml.get("rescaling_scale"),
"skip_block_list": first_pass_config_from_yaml.get("skip_block_list")
})
for key in ["num_inference_steps", "first_pass", "second_pass", "downscale_factor"]:
single_pass_call_kwargs.pop(key, None)
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
if result_images_tensor is None:
raise gr.Error("Generation failed.")
# Process the result
pad_left, pad_right, pad_top, pad_bottom = padding_values
slice_h_end = -pad_bottom if pad_bottom > 0 else None
slice_w_end = -pad_right if pad_right > 0 else None
result_images_tensor = result_images_tensor[
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
]
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
video_np = np.clip(video_np, 0, 1)
video_np = (video_np * 255).astype(np.uint8)
# Save video temporarily
temp_dir = tempfile.mkdtemp()
output_video_path = os.path.join(temp_dir, f"output_{random.randint(10000, 99999)}.mp4")
try:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
for frame_idx in range(video_np.shape[0]):
progress(frame_idx / video_np.shape[0], desc="Saving video")
video_writer.append_data(video_np[frame_idx])
except Exception as e:
print(f"Error saving video: {e}")
try:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer:
for frame_idx in range(video_np.shape[0]):
progress(frame_idx / video_np.shape[0], desc="Saving video (fallback)")
video_writer.append_data(video_np[frame_idx])
except Exception as e2:
shutil.rmtree(temp_dir, ignore_errors=True)
raise gr.Error(f"Failed to save video: {e2}")
# Upload video and get URL
video_url = video_to_url(output_video_path)
shutil.rmtree(temp_dir, ignore_errors=True)
return video_url
# Initialize models
initialize_models()
# Gradio interface
css = """
#col-container {
margin: 0 auto;
max-width: 900px;
}
.gradio-container {
background-color: #f5f5f5;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# LTX Video Generator")
gr.Markdown("Generate videos from images using AI. Provide at least one input image (first frame or last frame) and a prompt.")
with gr.Row():
with gr.Column():
gr.Markdown("### Input Options")
input_image_input = gr.Image(label="First Frame Image (Optional)", type="filepath", sources=["upload", "webcam", "clipboard"])
final_image_input = gr.Image(label="Last Frame Image (Optional)", type="filepath", sources=["upload", "webcam", "clipboard"])
prompt_input = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3)
duration_input = gr.Slider(
label="Video Duration (seconds)",
minimum=1,
maximum=8,
value=2,
step=0.1,
info="Target video duration (1s to 8s)"
)
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
gr.Markdown("### Output")
video_output = gr.Textbox(label="Generated Video URL", interactive=False)
video_preview = gr.Video(label="Video Preview", interactive=False, visible=False)
gr.Markdown("**Note:** You must provide at least one input image (either first frame or last frame).")
generate_button.click(
fn=generate,
inputs=[prompt_input, input_image_input, final_image_input, duration_input],
outputs=[video_output],
api_name="generate_video"
)
if __name__ == "__main__":
demo.launch()
|