import os.path from transformers import BertTokenizer, BertForSequenceClassification,TextClassificationPipeline, AutoModelForSequenceClassification # Load tokenizer and model from the fine-tuned directory # model_path = './intent_classification/TinyBERT_106_V2' # can try other checkpoints # # tokenizer = BertTokenizer.from_pretrained(model_path) # # model = BertForSequenceClassification.from_pretrained(model_path) # model = AutoModelForSequenceClassification.from_pretrained(model_path, local_files_only=True) # print(os.path.exists(model_path)) # print("TInyBERT model is ready to use") # # # # for classification pipeline # text_pipeline = TextClassificationPipeline(model=model, tokenizer=tokenizer) # # # function to generate response # def generate_response(user_query): # response = text_pipeline(user_query) # # # example of response: [{'label': 'LABEL_4', 'score': 0.9997817873954773}] # label_name = response[0].get('label') # score = response[0].get('score') # # # label for each math topic based on label_name # topic_label='NA' # # match label_name: # case "LABEL_0": # topic_label='RAG' # # case "LABEL_1": # topic_label = 'Neo4j' # # return topic_label, score def get_dir(): return os.getcwd() # print(generate_response("Procedure to withdraw")) get_dir()