Spaces:
Running
Running
Commit
·
89610f9
1
Parent(s):
451012d
Add FastAPI ONNX backend
Browse files- Dockerfile +14 -0
- app.py +364 -0
- requirements.txt +5 -0
Dockerfile
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
RUN useradd -m -u 1000 user
|
4 |
+
USER user
|
5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
6 |
+
|
7 |
+
WORKDIR /app
|
8 |
+
|
9 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
11 |
+
|
12 |
+
COPY --chown=user . /app
|
13 |
+
|
14 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import onnxruntime as ort
|
2 |
+
import numpy as np
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from fastapi import FastAPI
|
5 |
+
from pydantic import BaseModel
|
6 |
+
import uvicorn
|
7 |
+
from concurrent.futures import ThreadPoolExecutor
|
8 |
+
import tldextract
|
9 |
+
from fastapi.middleware.cors import CORSMiddleware
|
10 |
+
import asyncio
|
11 |
+
import time
|
12 |
+
import re
|
13 |
+
from urllib.parse import urlparse
|
14 |
+
import string
|
15 |
+
from collections import Counter
|
16 |
+
|
17 |
+
class ONNXPhishingDetector:
|
18 |
+
def __init__(self, model_path="phishing_detector.onnx"):
|
19 |
+
# Initialize with optimized settings and cache
|
20 |
+
self.tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base", local_files_only=False)
|
21 |
+
self.session = ort.InferenceSession(
|
22 |
+
model_path,
|
23 |
+
providers=['CPUExecutionProvider'], # Removed CoreMLExecutionProvider due to errors
|
24 |
+
sess_options=self._get_optimized_options()
|
25 |
+
)
|
26 |
+
self.model_expected_length = 128
|
27 |
+
self.extract = tldextract.TLDExtract(include_psl_private_domains=True)
|
28 |
+
self.url_cache = {} # Cache for URL analysis results
|
29 |
+
self.thread_pool = ThreadPoolExecutor(max_workers=32) # Increased thread pool size for better parallelism
|
30 |
+
|
31 |
+
# Comprehensive lists for pattern matching
|
32 |
+
self.suspicious_keywords = {
|
33 |
+
'login': 'credential-related',
|
34 |
+
'signin': 'credential-related',
|
35 |
+
'account': 'credential-related',
|
36 |
+
'password': 'credential-related',
|
37 |
+
'verify': 'verification-related',
|
38 |
+
'secure': 'security-related',
|
39 |
+
'banking': 'financial-related',
|
40 |
+
'paypal': 'financial-related',
|
41 |
+
'wallet': 'financial-related',
|
42 |
+
'bitcoin': 'cryptocurrency-related',
|
43 |
+
'crypto': 'cryptocurrency-related',
|
44 |
+
'authenticate': 'authentication-related',
|
45 |
+
'authorize': 'authentication-related',
|
46 |
+
'validation': 'verification-related',
|
47 |
+
'confirm': 'verification-related'
|
48 |
+
}
|
49 |
+
|
50 |
+
self.legitimate_tlds = {'.com', '.org', '.net', '.edu', '.gov', '.mil', '.int'}
|
51 |
+
self.suspicious_tlds = {'.xyz', '.top', '.buzz', '.country', '.stream', '.gq', '.tk', '.ml'}
|
52 |
+
|
53 |
+
# Brand protection patterns
|
54 |
+
self.common_brands = {
|
55 |
+
'google', 'facebook', 'apple', 'microsoft', 'amazon', 'paypal',
|
56 |
+
'netflix', 'linkedin', 'twitter', 'instagram'
|
57 |
+
}
|
58 |
+
|
59 |
+
def _get_optimized_options(self):
|
60 |
+
# Optimize ONNX session options
|
61 |
+
options = ort.SessionOptions()
|
62 |
+
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
63 |
+
# Note: Changing these thread values doesn't significantly impact performance
|
64 |
+
options.intra_op_num_threads = 4
|
65 |
+
options.inter_op_num_threads = 4
|
66 |
+
options.enable_mem_pattern = True
|
67 |
+
options.enable_cpu_mem_arena = True
|
68 |
+
return options
|
69 |
+
|
70 |
+
def _calculate_entropy(self, text):
|
71 |
+
"""Calculate Shannon entropy of domain to detect random-looking strings"""
|
72 |
+
prob = [float(text.count(c)) / len(text) for c in set(text)]
|
73 |
+
entropy = -sum(p * np.log2(p) for p in prob)
|
74 |
+
return entropy
|
75 |
+
|
76 |
+
def _check_character_distribution(self, domain):
|
77 |
+
"""Analyze character distribution patterns"""
|
78 |
+
if not domain: # Handle empty domain case
|
79 |
+
return 0.0, 0.0
|
80 |
+
|
81 |
+
char_counts = Counter(domain)
|
82 |
+
total_chars = len(domain)
|
83 |
+
|
84 |
+
# Check for unusual character distributions
|
85 |
+
digit_ratio = sum(c.isdigit() for c in domain) / total_chars
|
86 |
+
consonant_ratio = sum(c in 'bcdfghjklmnpqrstvwxyz' for c in domain.lower()) / total_chars
|
87 |
+
|
88 |
+
return digit_ratio, consonant_ratio
|
89 |
+
|
90 |
+
def _analyze_url_structure(self, url, ext):
|
91 |
+
reasons = []
|
92 |
+
parsed = urlparse(url)
|
93 |
+
domain = ext.domain
|
94 |
+
|
95 |
+
# 1. Domain Analysis
|
96 |
+
domain_length = len(domain)
|
97 |
+
entropy = self._calculate_entropy(domain)
|
98 |
+
digit_ratio, consonant_ratio = self._check_character_distribution(domain)
|
99 |
+
|
100 |
+
# Check domain composition
|
101 |
+
if domain_length > 20:
|
102 |
+
reasons.append(f"Suspicious: Domain length ({domain_length} chars) exceeds normal range")
|
103 |
+
|
104 |
+
if entropy > 4.5:
|
105 |
+
reasons.append(f"Suspicious: High domain entropy ({entropy:.2f}) suggests randomly generated name")
|
106 |
+
|
107 |
+
if digit_ratio > 0.4:
|
108 |
+
reasons.append(f"Suspicious: Unusual number of digits ({digit_ratio:.1%} of domain)")
|
109 |
+
|
110 |
+
if consonant_ratio > 0.7:
|
111 |
+
reasons.append(f"Suspicious: Unusual consonant pattern ({consonant_ratio:.1%} of domain)")
|
112 |
+
|
113 |
+
# 2. Brand Impersonation Detection
|
114 |
+
for brand in self.common_brands:
|
115 |
+
if brand in domain and brand != domain:
|
116 |
+
if re.search(f"{brand}[^a-zA-Z]", domain) or re.search(f"[^a-zA-Z]{brand}", domain):
|
117 |
+
reasons.append(f"High Risk: Potential brand impersonation of {brand}")
|
118 |
+
|
119 |
+
# 3. URL Component Analysis
|
120 |
+
if parsed.username or parsed.password:
|
121 |
+
reasons.append("High Risk: URL contains embedded credentials")
|
122 |
+
|
123 |
+
if parsed.port and parsed.port not in (80, 443):
|
124 |
+
reasons.append(f"Suspicious: Non-standard port number ({parsed.port})")
|
125 |
+
|
126 |
+
# 4. Path Analysis
|
127 |
+
if parsed.path:
|
128 |
+
path_segments = parsed.path.split('/')
|
129 |
+
if len(path_segments) > 4:
|
130 |
+
reasons.append(f"Suspicious: Deep URL structure ({len(path_segments)} levels)")
|
131 |
+
|
132 |
+
# Check for suspicious file extensions
|
133 |
+
if any(segment.endswith(('.exe', '.dll', '.bat', '.sh')) for segment in path_segments):
|
134 |
+
reasons.append("High Risk: Contains executable file extension")
|
135 |
+
|
136 |
+
# 5. Query Parameter Analysis
|
137 |
+
if parsed.query:
|
138 |
+
query_params = parsed.query.split('&')
|
139 |
+
suspicious_params = [p for p in query_params if any(k in p.lower() for k in ['pass', 'pwd', 'token', 'key'])]
|
140 |
+
if suspicious_params:
|
141 |
+
reasons.append("Suspicious: Query contains sensitive parameter names")
|
142 |
+
|
143 |
+
# 6. Special Pattern Detection
|
144 |
+
if len(re.findall(r'[.-]', domain)) > 4:
|
145 |
+
reasons.append("Suspicious: Excessive use of dots/hyphens in domain")
|
146 |
+
|
147 |
+
if re.search(r'([a-zA-Z0-9])\1{3,}', domain):
|
148 |
+
reasons.append("Suspicious: Repeated character pattern detected")
|
149 |
+
|
150 |
+
# 7. TLD Analysis
|
151 |
+
if ext.suffix in self.suspicious_tlds:
|
152 |
+
reasons.append(f"Suspicious: Known high-risk TLD (.{ext.suffix})")
|
153 |
+
elif ext.suffix not in [tld.strip('.') for tld in self.legitimate_tlds]:
|
154 |
+
reasons.append(f"Suspicious: Uncommon TLD (.{ext.suffix})")
|
155 |
+
|
156 |
+
# 8. Keyword Analysis
|
157 |
+
found_keywords = []
|
158 |
+
for keyword, category in self.suspicious_keywords.items():
|
159 |
+
if keyword in f"{domain}{parsed.path}".lower():
|
160 |
+
found_keywords.append(f"{keyword} ({category})")
|
161 |
+
|
162 |
+
if found_keywords:
|
163 |
+
reasons.append(f"Suspicious: Contains sensitive keywords: {', '.join(found_keywords)}")
|
164 |
+
|
165 |
+
return reasons
|
166 |
+
|
167 |
+
def _batch_preprocess(self, urls):
|
168 |
+
processed = []
|
169 |
+
for url in urls:
|
170 |
+
url = url.strip().lower()
|
171 |
+
if not url.startswith(('http://', 'https://')):
|
172 |
+
url = f'http://{url}'
|
173 |
+
processed.append(url)
|
174 |
+
return processed
|
175 |
+
|
176 |
+
def _batch_tokenize(self, urls):
|
177 |
+
return self.tokenizer(
|
178 |
+
urls,
|
179 |
+
max_length=self.model_expected_length,
|
180 |
+
truncation=True,
|
181 |
+
padding="max_length",
|
182 |
+
return_tensors="np"
|
183 |
+
)
|
184 |
+
|
185 |
+
def _predict_thread(self, urls):
|
186 |
+
"""Process a batch of URLs in a separate thread"""
|
187 |
+
processed_urls = self._batch_preprocess(urls)
|
188 |
+
inputs = self._batch_tokenize(processed_urls)
|
189 |
+
|
190 |
+
ort_inputs = {
|
191 |
+
"input_ids": inputs["input_ids"].astype(np.int64),
|
192 |
+
"attention_mask": inputs["attention_mask"].astype(np.int64)
|
193 |
+
}
|
194 |
+
|
195 |
+
try:
|
196 |
+
logits = self.session.run(None, ort_inputs)[0]
|
197 |
+
probabilities = np.exp(logits) / np.sum(np.exp(logits), axis=-1, keepdims=True)
|
198 |
+
|
199 |
+
results = []
|
200 |
+
for url, prob in zip(urls, probabilities[:, 1]):
|
201 |
+
ext = self.extract(url)
|
202 |
+
reasons = self._analyze_url_structure(url, ext)
|
203 |
+
|
204 |
+
if prob > 0.99:
|
205 |
+
reasons.append(f"Critical: ML model detected strong phishing patterns (confidence: {prob:.2%})")
|
206 |
+
verdict = "phishing"
|
207 |
+
else:
|
208 |
+
if not reasons:
|
209 |
+
reasons = ["No suspicious patterns detected"]
|
210 |
+
verdict = "legitimate"
|
211 |
+
|
212 |
+
result = {
|
213 |
+
"url": url,
|
214 |
+
"verdict": verdict,
|
215 |
+
"confidence": float(prob),
|
216 |
+
"reasons": set(reasons)
|
217 |
+
}
|
218 |
+
|
219 |
+
self.url_cache[url] = result
|
220 |
+
results.append(result)
|
221 |
+
|
222 |
+
return results
|
223 |
+
except Exception as e:
|
224 |
+
# Fallback to rule-based analysis if model inference fails
|
225 |
+
results = []
|
226 |
+
for url in urls:
|
227 |
+
ext = self.extract(url)
|
228 |
+
reasons = self._analyze_url_structure(url, ext)
|
229 |
+
|
230 |
+
# Determine verdict based on rule analysis only
|
231 |
+
if any("High Risk" in reason for reason in reasons):
|
232 |
+
verdict = "phishing"
|
233 |
+
confidence = 0.95
|
234 |
+
elif len(reasons) > 2:
|
235 |
+
verdict = "phishing"
|
236 |
+
confidence = 0.85
|
237 |
+
else:
|
238 |
+
verdict = "legitimate"
|
239 |
+
confidence = 0.70
|
240 |
+
if not reasons:
|
241 |
+
reasons = ["No suspicious patterns detected"]
|
242 |
+
|
243 |
+
result = {
|
244 |
+
"url": url,
|
245 |
+
"verdict": verdict,
|
246 |
+
"confidence": float(confidence),
|
247 |
+
"reasons": set(reasons + ["Note: Using rule-based analysis due to model inference error"])
|
248 |
+
}
|
249 |
+
|
250 |
+
self.url_cache[url] = result
|
251 |
+
results.append(result)
|
252 |
+
|
253 |
+
return results
|
254 |
+
|
255 |
+
async def _batch_predict(self, inputs):
|
256 |
+
ort_inputs = {
|
257 |
+
"input_ids": inputs["input_ids"].astype(np.int64),
|
258 |
+
"attention_mask": inputs["attention_mask"].astype(np.int64)
|
259 |
+
}
|
260 |
+
return self.session.run(None, ort_inputs)[0]
|
261 |
+
|
262 |
+
async def _batch_analyze(self, urls):
|
263 |
+
processed_urls = self._batch_preprocess(urls)
|
264 |
+
inputs = self._batch_tokenize(processed_urls)
|
265 |
+
logits = await self._batch_predict(inputs)
|
266 |
+
probabilities = np.exp(logits) / np.sum(np.exp(logits), axis=-1, keepdims=True)
|
267 |
+
return probabilities[:, 1]
|
268 |
+
|
269 |
+
async def analyze_batch(self, urls):
|
270 |
+
results = []
|
271 |
+
uncached_urls = []
|
272 |
+
|
273 |
+
# Check cache first
|
274 |
+
for url in urls:
|
275 |
+
if url in self.url_cache:
|
276 |
+
results.append(self.url_cache[url])
|
277 |
+
else:
|
278 |
+
uncached_urls.append(url)
|
279 |
+
|
280 |
+
if uncached_urls:
|
281 |
+
# Split URLs into smaller batches for multithreaded processing
|
282 |
+
batch_size = 10 # Process 10 URLs per thread
|
283 |
+
url_batches = [uncached_urls[i:i+batch_size] for i in range(0, len(uncached_urls), batch_size)]
|
284 |
+
|
285 |
+
# Submit each batch to thread pool
|
286 |
+
futures = []
|
287 |
+
for batch in url_batches:
|
288 |
+
futures.append(self.thread_pool.submit(self._predict_thread, batch))
|
289 |
+
|
290 |
+
# Collect results from all threads
|
291 |
+
for future in futures:
|
292 |
+
try:
|
293 |
+
batch_results = future.result()
|
294 |
+
results.extend(batch_results)
|
295 |
+
except Exception as e:
|
296 |
+
# Handle any unexpected errors in thread execution
|
297 |
+
print(f"Error processing batch: {str(e)}")
|
298 |
+
# Create fallback results for this batch
|
299 |
+
for url in batch:
|
300 |
+
results.append({
|
301 |
+
"url": url,
|
302 |
+
"verdict": "error",
|
303 |
+
"confidence": 0.0,
|
304 |
+
"reasons": {f"Error analyzing URL: {str(e)}"}
|
305 |
+
})
|
306 |
+
|
307 |
+
return results
|
308 |
+
|
309 |
+
app = FastAPI()
|
310 |
+
|
311 |
+
# Add CORS middleware
|
312 |
+
app.add_middleware(
|
313 |
+
CORSMiddleware,
|
314 |
+
allow_origins=["*"],
|
315 |
+
allow_credentials=True,
|
316 |
+
allow_methods=["*"],
|
317 |
+
allow_headers=["*"],
|
318 |
+
)
|
319 |
+
|
320 |
+
detector = ONNXPhishingDetector()
|
321 |
+
|
322 |
+
class UrlList(BaseModel):
|
323 |
+
urls: list[str]
|
324 |
+
|
325 |
+
@app.post("/scan")
|
326 |
+
async def scan_urls(url_list: UrlList):
|
327 |
+
start_time = time.time()
|
328 |
+
|
329 |
+
# Process all URLs in a single batch with internal multithreading
|
330 |
+
results = await detector.analyze_batch(url_list.urls)
|
331 |
+
|
332 |
+
phishing_count = sum(1 for r in results if r["verdict"] == "phishing")
|
333 |
+
avg_confidence = sum(r["confidence"] for r in results) / len(results) if results else 0
|
334 |
+
|
335 |
+
if avg_confidence >= 0.99:
|
336 |
+
overall_verdict = "malicious"
|
337 |
+
else:
|
338 |
+
overall_verdict = "safe"
|
339 |
+
|
340 |
+
return {
|
341 |
+
"time_taken": f"{time.time() - start_time:.2f}s",
|
342 |
+
"total_urls": len(url_list.urls),
|
343 |
+
"legitimate": len(url_list.urls) - phishing_count,
|
344 |
+
"phishing": phishing_count,
|
345 |
+
"overall_verdict": overall_verdict,
|
346 |
+
"average_confidence": avg_confidence,
|
347 |
+
"results": results
|
348 |
+
}
|
349 |
+
|
350 |
+
# To run this file in terminal:
|
351 |
+
# 1. Make sure you have all dependencies installed:
|
352 |
+
# pip install fastapi uvicorn onnxruntime numpy transformers tldextract
|
353 |
+
# 2. Navigate to the directory containing this file
|
354 |
+
# 3. Run the command:
|
355 |
+
# python -m backend.main
|
356 |
+
# or if you're already in the backend directory:
|
357 |
+
# python main.py
|
358 |
+
# 4. The API will be available at http://localhost:8000
|
359 |
+
# 5. You can test it with curl:
|
360 |
+
# curl -X POST "http://localhost:8000/scan" -H "Content-Type: application/json" -d '{"urls":["google.com", "suspicious-phishing-site.xyz"]}'
|
361 |
+
# 6. Or use tools like Postman to send POST requests to the /scan endpoint
|
362 |
+
|
363 |
+
if __name__ == "__main__":
|
364 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
onnxruntime
|
4 |
+
scikit-learn
|
5 |
+
joblib
|