File size: 11,227 Bytes
5b2e524
 
 
 
 
 
 
 
 
 
e84dca6
5b2e524
 
 
 
 
 
 
 
 
 
 
 
 
 
e84dca6
 
5b2e524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2be83d
5b2e524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2be83d
 
 
 
 
5b2e524
 
c2be83d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import torch
import gradio as gr
import json
import time
import random
from transformers import pipeline
import pycountry
from datetime import datetime
from pydantic import BaseModel, PydanticUserError, ConfigDict
from pydantic import BaseModel, ConfigDict
import json

class MyModel(BaseModel):
    request: 'starlette.requests.Request'
    model_config = ConfigDict(arbitrary_types_allowed=True)
from pydantic_core import core_schema
from starlette.requests import Request

def get_pydantic_core_schema(request_type, handler):
    return core_schema.any_schema()

Request.__get_pydantic_core_schema__ = get_pydantic_core_schema
# Initialize pipelines with error handling
try:
    lang_detector = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection")
    #text_translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16)
    text_translator = pipeline("translation", model="facebook/nllb-200-distilled-600M")
    print("๐Ÿš€ AI Translation Hub initialized successfully!")
except Exception as e:
    print(f"โš ๏ธ Error initializing models: {e}")

# Extended language support with emojis
LANGUAGES = {
    'English': '๐Ÿ‡บ๐Ÿ‡ธ',
    'Spanish': '๐Ÿ‡ช๐Ÿ‡ธ', 
    'French': '๐Ÿ‡ซ๐Ÿ‡ท',
    'German': '๐Ÿ‡ฉ๐Ÿ‡ช',
    'Italian': '๐Ÿ‡ฎ๐Ÿ‡น',
    'Portuguese': '๐Ÿ‡ต๐Ÿ‡น',
    'Russian': '๐Ÿ‡ท๐Ÿ‡บ',
    'Chinese (Simplified)': '๐Ÿ‡จ๐Ÿ‡ณ',
    'Japanese': '๐Ÿ‡ฏ๐Ÿ‡ต',
    'Korean': '๐Ÿ‡ฐ๐Ÿ‡ท',
    'Arabic': '๐Ÿ‡ธ๐Ÿ‡ฆ',
    'Hindi': '๐Ÿ‡ฎ๐Ÿ‡ณ',
    'Dutch': '๐Ÿ‡ณ๐Ÿ‡ฑ',
    'Swedish': '๐Ÿ‡ธ๐Ÿ‡ช',
    'Norwegian': '๐Ÿ‡ณ๐Ÿ‡ด'
}

# Load language data with fallback
try:
    with open('language.json', 'r') as file:
        language_data = json.load(file)
except FileNotFoundError:
    print("โš ๏ธ Language data file not found. Using basic mapping.")
    language_data = {'languages': []}

# Translation statistics
translation_stats = {
    'total_translations': 0,
    'languages_detected': set(),
    'session_start': datetime.now()
}

def get_FLORES_code_from_language(language):
    """Enhanced FLORES code lookup with fallback mapping"""
    # Remove emoji and extract clean language name
    import re
    # Remove emoji flags and extra spaces
    clean_language = re.sub(r'[๐Ÿ‡ฆ-๐Ÿ‡ฟ]{2}\s*', '', language).strip()
    
    for entry in language_data.get('languages', []):
        if entry['Language'].lower() == clean_language.lower():
            return entry['FLORES-200 code']
    
    # Fallback mapping for common languages
    fallback_mapping = {
        'english': 'eng_Latn',
        'spanish': 'spa_Latn',
        'french': 'fra_Latn',
        'german': 'deu_Latn',
        'chinese (simplified)': 'zho_Hans',
        'italian': 'ita_Latn',
        'portuguese': 'por_Latn',
        'russian': 'rus_Cyrl',
        'japanese': 'jpn_Jpan',
        'korean': 'kor_Hang',
        'arabic': 'arb_Arab',
        'hindi': 'hin_Deva',
        'dutch': 'nld_Latn',
        'swedish': 'swe_Latn',
        'norwegian': 'nor_Latn'
    }
    
    return fallback_mapping.get(clean_language.lower())

def detect_language_confidence(text):
    """Get language detection with confidence score"""
    if not text.strip():
        return "Unknown", 0.0
    
    try:
        result = lang_detector(text)[0]
        return result['label'], result['score']
    except:
        return "Unknown", 0.0

def translate_with_analytics(text, destination_language, show_confidence=True):
    """Enhanced translation with analytics and progress tracking"""
    
    if not text.strip():
        return "โš ๏ธ Please enter some text to translate", "", ""
    
    # Update statistics
    translation_stats['total_translations'] += 1
    
    # Simulate processing for dramatic effect
    yield "๐Ÿ” Analyzing text...", "", ""
    time.sleep(0.5)
    
    # Detect source language with confidence
    detected_lang, confidence = detect_language_confidence(text)
    translation_stats['languages_detected'].add(detected_lang)
    
    yield f"๐Ÿง  Detected language: {detected_lang.upper()} ({confidence:.1%} confidence)", "", ""
    time.sleep(0.3)
    
    # Get language codes
    try:
        lang = pycountry.languages.get(alpha_2=detected_lang)
        src_code = f"{lang.alpha_3}_Latn" if lang else "eng_Latn"
    except:
        src_code = "eng_Latn"
    
    dest_code = get_FLORES_code_from_language(destination_language)
    if not dest_code:
        yield f"โŒ Unsupported target language: {destination_language}", "", ""
        return
    
    yield f"โšก Translating to {destination_language.split(' ', 1)[-1] if ' ' in destination_language else destination_language}...", "", ""
    time.sleep(0.5)
    
    # Handle same language
    if src_code == dest_code:
        analytics = f"""
๐Ÿ“Š **Translation Analytics**
- Source: {detected_lang.upper()} ({confidence:.1%} confidence)
- Target: Same language detected
- Action: No translation needed
- Processing time: <1s
        """
        yield "โœ… Translation complete!", text, analytics.strip()
        return
    
    # Perform translation
    try:
        start_time = time.time()
        
        # Calculate appropriate max_length based on input length
        input_length = len(text)
        # Set max_length to be 1.5x input length with a minimum of 512 and maximum of 2048
        max_length = max(512, min(2048, int(input_length * 1.5)))
        
        translation = text_translator(
            text, 
            src_lang=src_code, 
            tgt_lang=dest_code,
            max_length=max_length,
            do_sample=False,  # For more consistent results
            num_beams=4       # Better quality translation
        )
        processing_time = time.time() - start_time
        
        result = translation[0]['translation_text']
        
        # Generate analytics
        import re
        clean_dest_lang = re.sub(r'[๐Ÿ‡ฆ-๐Ÿ‡ฟ]{2}\s*', '', destination_language).strip()
        
        analytics = f"""
๐Ÿ“Š **Translation Analytics**
- **Source Language**: {detected_lang.upper()} ({confidence:.1%} confidence)
- **Target Language**: {clean_dest_lang}
- **Characters Processed**: {len(text):,}
- **Max Length Used**: {max_length}
- **Processing Time**: {processing_time:.2f}s
- **Session Translations**: {translation_stats['total_translations']}
- **Languages Detected**: {len(translation_stats['languages_detected'])}
        """
        
        yield "โœ… Translation complete!", result, analytics.strip()
        
    except Exception as e:
        yield f"โŒ Translation failed: {str(e)}", "", ""

def clear_all():
    """Reset all fields"""
    return "", "", "", ""

# Custom CSS for a modern, sleek interface
custom_css = """
.gradio-container {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}

.gr-button {
    background: linear-gradient(45deg, #FF6B6B, #4ECDC4);
    border: none;
    border-radius: 25px;
    color: white;
    font-weight: bold;
    transition: all 0.3s ease;
    box-shadow: 0 4px 15px rgba(0,0,0,0.2);
}

.gr-button:hover {
    transform: translateY(-2px);
    box-shadow: 0 6px 20px rgba(0,0,0,0.3);
}

.gr-textbox {
    border-radius: 15px;
    border: 2px solid #e0e0e0;
    transition: all 0.3s ease;
}

.gr-textbox:focus {
    border-color: #667eea;
    box-shadow: 0 0 15px rgba(102, 126, 234, 0.3);
}

.gr-dropdown {
    border-radius: 15px;
    border: 2px solid #e0e0e0;
}

.gr-panel {
    background: rgba(255,255,255,0.95);
    border-radius: 20px;
    backdrop-filter: blur(10px);
    box-shadow: 0 8px 32px rgba(0,0,0,0.1);
}

.gr-form {
    background: transparent;
}

.gr-box {
    border-radius: 15px;
    background: rgba(255,255,255,0.9);
}
"""

# Create the interface
with gr.Blocks(css=custom_css, title="๐ŸŒ KS Translation Hub") as demo:
    gr.HTML("""
    <div style="text-align: center; padding: 20px; background: linear-gradient(45deg, #FF6B6B, #4ECDC4); border-radius: 20px; margin-bottom: 20px;">
        <h1 style="color: white; font-size: 3em; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">
            ๐ŸŒ KS Translation Hub
        </h1>
        <p style="color: white; font-size: 1.2em; margin: 10px 0 0 0; opacity: 0.9;">
            Powered by Advanced Neural Networks โ€ข Real-time Language Detection โ€ข 15+ Languages
        </p>
    </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.HTML("<h3 style='text-align: center; color: #333;'>๐Ÿ“ Input</h3>")
            input_text = gr.Textbox(
                label="Enter text to translate",
                placeholder="Type or paste your text here... ๐Ÿ–Š๏ธ",
                lines=8,
                show_label=False
            )
            
            with gr.Row():
                target_lang = gr.Dropdown(
                    choices=[f"{flag} {lang}" for lang, flag in LANGUAGES.items()],
                    label="๐ŸŽฏ Target Language",
                    value="๐Ÿ‡ช๐Ÿ‡ธ Spanish",
                    show_label=True
                )
        
        with gr.Column(scale=1):
            gr.HTML("<h3 style='text-align: center; color: #333;'>โœจ Output</h3>")
            output_text = gr.Textbox(
                label="Translation",
                lines=8,
                show_label=False,
                interactive=False
            )
    
    with gr.Row():
        with gr.Column(scale=1):
            status_text = gr.Textbox(
                label="๐Ÿ”„ Status",
                value="Ready to translate...",
                interactive=False,
                show_label=True
            )
        
        with gr.Column(scale=1):
            analytics_text = gr.Textbox(
                label="๐Ÿ“Š Analytics",
                value="Translation analytics will appear here...",
                interactive=False,
                show_label=True,
                lines=6
            )
    
    with gr.Row():
        translate_btn = gr.Button("๐Ÿš€ Translate", variant="primary", size="lg")
        clear_btn = gr.Button("๐Ÿ—‘๏ธ Clear All", variant="secondary", size="lg")
    
    # Event handlers
    translate_btn.click(
        fn=translate_with_analytics,
        inputs=[input_text, target_lang],
        outputs=[status_text, output_text, analytics_text]
    )
    
    clear_btn.click(
        fn=clear_all,
        outputs=[input_text, output_text, status_text, analytics_text]
    )
    
    # Auto-translate on Enter key
    input_text.submit(
        fn=translate_with_analytics,
        inputs=[input_text, target_lang],
        outputs=[status_text, output_text, analytics_text]
    )
    
    gr.HTML("""
    <div style="text-align: center; padding: 20px; margin-top: 20px; background: rgba(255,255,255,0.8); border-radius: 15px;">
        <p style="color: #666; font-size: 0.9em;">
            ๐Ÿค– Powered by Transformers โ€ข ๐Ÿ”’ Privacy-First โ€ข โšก Real-time Processing
        </p>
    </div>
    """)

# Launch with enhanced settings
if __name__ == "__main__":
    demo.launch()
    #demo.launch(
    #    share=True,
    #    server_name="127.0.0.1",
    #    server_port=7860,
        #show_tips=True,
        #enable_queue=True,
    #    max_threads=40
    #)