initial
Browse files- Dockerfile +40 -0
- app.py +7 -0
- requirements.txt +2 -0
- src/mcp_server_mariadb_vector/__init__.py +0 -0
- src/mcp_server_mariadb_vector/app_context.py +33 -0
- src/mcp_server_mariadb_vector/embeddings/base.py +28 -0
- src/mcp_server_mariadb_vector/embeddings/factory.py +22 -0
- src/mcp_server_mariadb_vector/embeddings/openai.py +48 -0
- src/mcp_server_mariadb_vector/embeddings/test.py +18 -0
- src/mcp_server_mariadb_vector/server.py +257 -0
- src/mcp_server_mariadb_vector/settings.py +22 -0
Dockerfile
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
# Install system dependencies
|
4 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
5 |
+
gcc \
|
6 |
+
python3-dev \
|
7 |
+
openssl \
|
8 |
+
curl \
|
9 |
+
ca-certificates \
|
10 |
+
gnupg \
|
11 |
+
build-essential && \
|
12 |
+
rm -rf /var/lib/apt/lists/*
|
13 |
+
|
14 |
+
# Set up MariaDB's Python connector dependencies
|
15 |
+
RUN curl -LsSO https://r.mariadb.com/downloads/mariadb_repo_setup && \
|
16 |
+
echo "c4a0f3dade02c51a6a28ca3609a13d7a0f8910cccbb90935a2f218454d3a914a mariadb_repo_setup" | sha256sum -c - && \
|
17 |
+
chmod +x mariadb_repo_setup && \
|
18 |
+
./mariadb_repo_setup --mariadb-server-version="mariadb-11.7" && \
|
19 |
+
rm mariadb_repo_setup && \
|
20 |
+
apt-get update && \
|
21 |
+
apt-get install -y --no-install-recommends \
|
22 |
+
libmariadb3 \
|
23 |
+
libmariadb-dev && \
|
24 |
+
apt-get clean && \
|
25 |
+
rm -rf /var/lib/apt/lists/*
|
26 |
+
|
27 |
+
# Install uv package manager
|
28 |
+
RUN pip install --no-cache-dir uv
|
29 |
+
|
30 |
+
WORKDIR /app
|
31 |
+
|
32 |
+
# Copy project files
|
33 |
+
COPY . /app
|
34 |
+
|
35 |
+
# Install project dependencies
|
36 |
+
RUN uv sync
|
37 |
+
|
38 |
+
EXPOSE 8000
|
39 |
+
|
40 |
+
CMD ["uv", "run", "mcp-server-mariadb-vector", "--transport", "sse", "--host", "0.0.0.0"]
|
app.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
|
3 |
+
app = FastAPI()
|
4 |
+
|
5 |
+
@app.get("/")
|
6 |
+
def greet_json():
|
7 |
+
return {"Hello": "World!"}
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
src/mcp_server_mariadb_vector/__init__.py
ADDED
File without changes
|
src/mcp_server_mariadb_vector/app_context.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import asynccontextmanager
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import AsyncIterator
|
4 |
+
|
5 |
+
import mariadb
|
6 |
+
from mcp.server.fastmcp import FastMCP
|
7 |
+
|
8 |
+
from mcp_server_mariadb_vector.settings import DatabaseSettings
|
9 |
+
|
10 |
+
|
11 |
+
@dataclass
|
12 |
+
class AppContext:
|
13 |
+
conn: mariadb.Connection
|
14 |
+
|
15 |
+
|
16 |
+
@asynccontextmanager
|
17 |
+
async def app_lifespan(server: FastMCP) -> AsyncIterator[AppContext]:
|
18 |
+
"""Open a MariaDB connection for the duration of the FastMCP session."""
|
19 |
+
|
20 |
+
cfg = DatabaseSettings()
|
21 |
+
conn = mariadb.connect(
|
22 |
+
host=cfg.host,
|
23 |
+
port=cfg.port,
|
24 |
+
user=cfg.user,
|
25 |
+
password=cfg.password,
|
26 |
+
database=cfg.database,
|
27 |
+
)
|
28 |
+
conn.autocommit = True
|
29 |
+
|
30 |
+
try:
|
31 |
+
yield AppContext(conn=conn)
|
32 |
+
finally:
|
33 |
+
conn.close()
|
src/mcp_server_mariadb_vector/embeddings/base.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from enum import Enum
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
|
6 |
+
class EmbeddingProviderType(Enum):
|
7 |
+
OPENAI = "openai"
|
8 |
+
TEST = "test"
|
9 |
+
# SENTENCE_TRANSFORMERS = "sentence-transformers"
|
10 |
+
|
11 |
+
|
12 |
+
class EmbeddingProvider(ABC):
|
13 |
+
"""Abstract base class for embedding providers."""
|
14 |
+
|
15 |
+
@abstractmethod
|
16 |
+
def length_of_embedding(self) -> int:
|
17 |
+
"""Get the length of the embedding for a given model."""
|
18 |
+
pass
|
19 |
+
|
20 |
+
@abstractmethod
|
21 |
+
def embed_documents(self, documents: List[str]) -> List[List[float]]:
|
22 |
+
"""Embed a list of documents into vectors."""
|
23 |
+
pass
|
24 |
+
|
25 |
+
@abstractmethod
|
26 |
+
def embed_query(self, query: str) -> List[float]:
|
27 |
+
"""Embed a query into a vector."""
|
28 |
+
pass
|
src/mcp_server_mariadb_vector/embeddings/factory.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mcp_server_mariadb_vector.embeddings.base import (
|
2 |
+
EmbeddingProvider,
|
3 |
+
EmbeddingProviderType,
|
4 |
+
)
|
5 |
+
from mcp_server_mariadb_vector.embeddings.openai import OpenAIEmbeddingProvider
|
6 |
+
from mcp_server_mariadb_vector.embeddings.test import TestEmbeddingProvider
|
7 |
+
from mcp_server_mariadb_vector.settings import EmbeddingSettings
|
8 |
+
|
9 |
+
|
10 |
+
def create_embedding_provider(settings: EmbeddingSettings) -> EmbeddingProvider:
|
11 |
+
"""
|
12 |
+
Create an instance of the specified embedding provider.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
settings: The settings for the embedding provider.
|
16 |
+
"""
|
17 |
+
if settings.provider == EmbeddingProviderType.OPENAI:
|
18 |
+
return OpenAIEmbeddingProvider(settings.model, settings.openai_api_key)
|
19 |
+
elif settings.provider == EmbeddingProviderType.TEST:
|
20 |
+
return TestEmbeddingProvider()
|
21 |
+
else:
|
22 |
+
raise ValueError(f"Unsupported embedding provider: {settings.provider}")
|
src/mcp_server_mariadb_vector/embeddings/openai.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from openai import OpenAI
|
4 |
+
|
5 |
+
from mcp_server_mariadb_vector.embeddings.base import EmbeddingProvider
|
6 |
+
|
7 |
+
|
8 |
+
class OpenAIEmbeddingProvider(EmbeddingProvider):
|
9 |
+
"""
|
10 |
+
OpenAI implementation of the embedding provider.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
model: The name of the OpenAI model to use.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, model: str, api_key: str):
|
17 |
+
self.model = model
|
18 |
+
self.client = OpenAI(api_key=api_key)
|
19 |
+
|
20 |
+
def length_of_embedding(self) -> int:
|
21 |
+
"""Get the length of the embedding for a given model."""
|
22 |
+
if self.model == "text-embedding-3-small":
|
23 |
+
return 1536
|
24 |
+
elif self.model == "text-embedding-3-large":
|
25 |
+
return 3072
|
26 |
+
else:
|
27 |
+
raise ValueError(f"Unknown embedding model: {self.model}")
|
28 |
+
|
29 |
+
def embed_documents(self, documents: List[str]) -> List[List[float]]:
|
30 |
+
"""Embed a list of documents into vectors."""
|
31 |
+
embeddings = [
|
32 |
+
self.client.embeddings.create(
|
33 |
+
model=self.model,
|
34 |
+
input=document,
|
35 |
+
)
|
36 |
+
.data[0]
|
37 |
+
.embedding
|
38 |
+
for document in documents
|
39 |
+
]
|
40 |
+
return embeddings
|
41 |
+
|
42 |
+
def embed_query(self, query: str) -> List[float]:
|
43 |
+
"""Embed a query into a vector."""
|
44 |
+
embedding = self.client.embeddings.create(
|
45 |
+
model=self.model,
|
46 |
+
input=query,
|
47 |
+
)
|
48 |
+
return embedding.data[0].embedding
|
src/mcp_server_mariadb_vector/embeddings/test.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from mcp_server_mariadb_vector.embeddings.base import EmbeddingProvider
|
4 |
+
|
5 |
+
|
6 |
+
class TestEmbeddingProvider(EmbeddingProvider):
|
7 |
+
"""
|
8 |
+
Embedding provider for testing.
|
9 |
+
"""
|
10 |
+
|
11 |
+
def length_of_embedding(self) -> int:
|
12 |
+
return 3
|
13 |
+
|
14 |
+
def embed_documents(self, documents: List[str]) -> List[List[float]]:
|
15 |
+
return [[0.1, 0.2, 0.3]] * len(documents)
|
16 |
+
|
17 |
+
def embed_query(self, query: str) -> List[float]:
|
18 |
+
return [0.1, 0.2, 0.3]
|
src/mcp_server_mariadb_vector/server.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
from typing import Annotated, List, Literal
|
4 |
+
|
5 |
+
import mariadb
|
6 |
+
from fastmcp import Context, FastMCP
|
7 |
+
from pydantic import Field
|
8 |
+
|
9 |
+
from mcp_server_mariadb_vector.app_context import app_lifespan
|
10 |
+
from mcp_server_mariadb_vector.embeddings.factory import create_embedding_provider
|
11 |
+
from mcp_server_mariadb_vector.settings import EmbeddingSettings
|
12 |
+
|
13 |
+
mcp = FastMCP(
|
14 |
+
"Mariadb Vector",
|
15 |
+
lifespan=app_lifespan,
|
16 |
+
dependencies=["mariadb", "openai", "pydantic", "pydantic-settings"],
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
embedding_provider = create_embedding_provider(EmbeddingSettings())
|
21 |
+
|
22 |
+
|
23 |
+
@mcp.tool()
|
24 |
+
def mariadb_create_vector_store(
|
25 |
+
ctx: Context,
|
26 |
+
vector_store_name: Annotated[
|
27 |
+
str,
|
28 |
+
Field(description="The name of the vector store to create"),
|
29 |
+
],
|
30 |
+
distance_function: Annotated[
|
31 |
+
Literal["euclidean", "cosine"],
|
32 |
+
Field(description="The distance function to use."),
|
33 |
+
] = "euclidean",
|
34 |
+
) -> str:
|
35 |
+
"""Create a vector store in the MariaDB database."""
|
36 |
+
|
37 |
+
embedding_length = embedding_provider.length_of_embedding()
|
38 |
+
|
39 |
+
schema_query = f"""
|
40 |
+
CREATE TABLE `{vector_store_name}` (
|
41 |
+
id BIGINT UNSIGNED PRIMARY KEY AUTO_INCREMENT,
|
42 |
+
document LONGTEXT NOT NULL,
|
43 |
+
embedding VECTOR({embedding_length}) NOT NULL,
|
44 |
+
metadata JSON NOT NULL,
|
45 |
+
VECTOR INDEX (embedding) DISTANCE={distance_function}
|
46 |
+
)
|
47 |
+
"""
|
48 |
+
|
49 |
+
try:
|
50 |
+
conn = ctx.request_context.lifespan_context.conn
|
51 |
+
with conn.cursor() as cursor:
|
52 |
+
cursor.execute(schema_query)
|
53 |
+
except mariadb.Error as e:
|
54 |
+
return f"Error creating vector store `{vector_store_name}`: {e}"
|
55 |
+
|
56 |
+
return f"Vector store `{vector_store_name}` created successfully."
|
57 |
+
|
58 |
+
|
59 |
+
def is_vector_store(conn, table: str, embedding_length: int) -> bool:
|
60 |
+
"""
|
61 |
+
True if `table` has the right schema, with vectors of the correct length, and a VECTOR index.
|
62 |
+
"""
|
63 |
+
|
64 |
+
with conn.cursor(dictionary=True) as cur:
|
65 |
+
# check columns
|
66 |
+
cur.execute(f"SHOW COLUMNS FROM `{table}`")
|
67 |
+
rows = {r["Field"]: r for r in cur}
|
68 |
+
|
69 |
+
if set(rows) != {"id", "document", "embedding", "metadata"}:
|
70 |
+
return False
|
71 |
+
|
72 |
+
# id
|
73 |
+
id_type = rows["id"]["Type"].lower()
|
74 |
+
if id_type != "bigint(20) unsigned":
|
75 |
+
return False
|
76 |
+
if (
|
77 |
+
rows["id"]["Null"] != "NO"
|
78 |
+
or rows["id"]["Key"] != "PRI"
|
79 |
+
or "auto_increment" not in rows["id"]["Extra"].lower()
|
80 |
+
):
|
81 |
+
return False
|
82 |
+
|
83 |
+
# document
|
84 |
+
if (
|
85 |
+
rows["document"]["Type"].lower() != "longtext"
|
86 |
+
or rows["document"]["Null"] != "NO"
|
87 |
+
):
|
88 |
+
return False
|
89 |
+
|
90 |
+
# embedding
|
91 |
+
if (
|
92 |
+
rows["embedding"]["Type"].lower() != f"vector({embedding_length})"
|
93 |
+
or rows["embedding"]["Null"] != "NO"
|
94 |
+
):
|
95 |
+
return False
|
96 |
+
|
97 |
+
# metadata
|
98 |
+
if (
|
99 |
+
rows["metadata"]["Type"].lower() != "longtext"
|
100 |
+
or rows["metadata"]["Null"] != "NO"
|
101 |
+
):
|
102 |
+
return False
|
103 |
+
|
104 |
+
# check vector index
|
105 |
+
cur.execute(f"""
|
106 |
+
SHOW INDEX FROM `{table}`
|
107 |
+
WHERE Index_type = 'VECTOR' AND Column_name = 'embedding'
|
108 |
+
""")
|
109 |
+
if cur.fetchone() is None:
|
110 |
+
return False
|
111 |
+
|
112 |
+
return True
|
113 |
+
|
114 |
+
|
115 |
+
@mcp.tool()
|
116 |
+
def mariadb_list_vector_stores(ctx: Context) -> str:
|
117 |
+
"""List all vector stores in a MariaDB database."""
|
118 |
+
try:
|
119 |
+
conn = ctx.request_context.lifespan_context.conn
|
120 |
+
with conn.cursor() as cursor:
|
121 |
+
cursor.execute("SHOW TABLES")
|
122 |
+
tables = [table[0] for table in cursor]
|
123 |
+
except mariadb.Error as e:
|
124 |
+
return f"Error listing vector stores: {e}"
|
125 |
+
|
126 |
+
embedding_length = embedding_provider.length_of_embedding()
|
127 |
+
vector_stores = [
|
128 |
+
table for table in tables if is_vector_store(conn, table, embedding_length)
|
129 |
+
]
|
130 |
+
|
131 |
+
return "Vector stores: " + ", ".join(vector_stores)
|
132 |
+
|
133 |
+
|
134 |
+
@mcp.tool()
|
135 |
+
def mariadb_delete_vector_store(
|
136 |
+
ctx: Context,
|
137 |
+
vector_store_name: Annotated[
|
138 |
+
str, Field(description="The name of the vector store to delete.")
|
139 |
+
],
|
140 |
+
) -> str:
|
141 |
+
"""Delete a vector store in the MariaDB database."""
|
142 |
+
|
143 |
+
try:
|
144 |
+
conn = ctx.request_context.lifespan_context.conn
|
145 |
+
with conn.cursor() as cursor:
|
146 |
+
cursor.execute(f"DROP TABLE `{vector_store_name}`")
|
147 |
+
except mariadb.Error as e:
|
148 |
+
return f"Error deleting vector store `{vector_store_name}`: {e}"
|
149 |
+
|
150 |
+
return f"Vector store `{vector_store_name}` deleted successfully."
|
151 |
+
|
152 |
+
|
153 |
+
@mcp.tool()
|
154 |
+
def mariadb_insert_documents(
|
155 |
+
ctx: Context,
|
156 |
+
vector_store_name: Annotated[
|
157 |
+
str, Field(description="The name of the vector store to insert documents into.")
|
158 |
+
],
|
159 |
+
documents: Annotated[
|
160 |
+
List[str], Field(description="The documents to insert into the vector store.")
|
161 |
+
],
|
162 |
+
metadata: Annotated[
|
163 |
+
List[dict], Field(description="The metadata of the documents to insert.")
|
164 |
+
],
|
165 |
+
) -> str:
|
166 |
+
"""Insert a document into a vector store."""
|
167 |
+
|
168 |
+
embeddings = embedding_provider.embed_documents(documents)
|
169 |
+
|
170 |
+
metadata_json = [json.dumps(metadata) for metadata in metadata]
|
171 |
+
|
172 |
+
insert_query = f"""
|
173 |
+
INSERT INTO `{vector_store_name}` (document, embedding, metadata) VALUES (%s, VEC_FromText(%s), %s)
|
174 |
+
"""
|
175 |
+
try:
|
176 |
+
conn = ctx.request_context.lifespan_context.conn
|
177 |
+
with conn.cursor() as cursor:
|
178 |
+
cursor.executemany(
|
179 |
+
insert_query, list(zip(documents, embeddings, metadata_json))
|
180 |
+
)
|
181 |
+
except mariadb.Error as e:
|
182 |
+
return f"Error inserting documents`{vector_store_name}`: {e}"
|
183 |
+
|
184 |
+
return f"Documents inserted into `{vector_store_name}` successfully."
|
185 |
+
|
186 |
+
|
187 |
+
@mcp.tool()
|
188 |
+
def mariadb_search_vector_store(
|
189 |
+
ctx: Context,
|
190 |
+
query: Annotated[str, Field(description="The query to search for.")],
|
191 |
+
vector_store_name: Annotated[
|
192 |
+
str, Field(description="The name of the vector store to search.")
|
193 |
+
],
|
194 |
+
k: Annotated[int, Field(gt=0, description="The number of results to return.")] = 5,
|
195 |
+
) -> str:
|
196 |
+
"""Search a vector store for the most similar documents to a query."""
|
197 |
+
|
198 |
+
embedding = embedding_provider.embed_query(query)
|
199 |
+
|
200 |
+
search_query = f"""
|
201 |
+
SELECT
|
202 |
+
document,
|
203 |
+
metadata,
|
204 |
+
VEC_DISTANCE_EUCLIDEAN(embedding, VEC_FromText(%s)) AS distance
|
205 |
+
FROM `{vector_store_name}`
|
206 |
+
ORDER BY distance ASC
|
207 |
+
LIMIT %s
|
208 |
+
"""
|
209 |
+
|
210 |
+
try:
|
211 |
+
conn = ctx.request_context.lifespan_context.conn
|
212 |
+
with conn.cursor(buffered=True) as cursor:
|
213 |
+
cursor.execute(
|
214 |
+
search_query,
|
215 |
+
(str(embedding), k),
|
216 |
+
)
|
217 |
+
rows = cursor.fetchall()
|
218 |
+
except mariadb.Error as e:
|
219 |
+
return f"Error searching vector store`{vector_store_name}`: {e}"
|
220 |
+
|
221 |
+
if not rows:
|
222 |
+
return "No similar context found."
|
223 |
+
|
224 |
+
return "\n\n".join(
|
225 |
+
f"Document: {row[0]}\nMetadata: {json.loads(row[1])}\nDistance: {row[2]}"
|
226 |
+
for row in rows
|
227 |
+
)
|
228 |
+
|
229 |
+
|
230 |
+
def main():
|
231 |
+
parser = argparse.ArgumentParser()
|
232 |
+
parser.add_argument(
|
233 |
+
"--transport",
|
234 |
+
choices=["stdio", "sse"],
|
235 |
+
default="stdio",
|
236 |
+
)
|
237 |
+
parser.add_argument(
|
238 |
+
"--host",
|
239 |
+
type=str,
|
240 |
+
default="127.0.0.1",
|
241 |
+
)
|
242 |
+
parser.add_argument(
|
243 |
+
"--port",
|
244 |
+
type=int,
|
245 |
+
default=8000,
|
246 |
+
)
|
247 |
+
|
248 |
+
args = parser.parse_args()
|
249 |
+
|
250 |
+
if args.transport == "sse":
|
251 |
+
mcp.run(transport=args.transport, host=args.host, port=args.port)
|
252 |
+
else:
|
253 |
+
mcp.run(transport=args.transport)
|
254 |
+
|
255 |
+
|
256 |
+
if __name__ == "__main__":
|
257 |
+
main()
|
src/mcp_server_mariadb_vector/settings.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
from pydantic import Field
|
4 |
+
from pydantic_settings import BaseSettings
|
5 |
+
|
6 |
+
from mcp_server_mariadb_vector.embeddings.base import EmbeddingProviderType
|
7 |
+
|
8 |
+
|
9 |
+
class DatabaseSettings(BaseSettings):
|
10 |
+
host: str = Field(default="127.0.0.1", alias="MARIADB_HOST")
|
11 |
+
port: int = Field(default=3306, alias="MARIADB_PORT")
|
12 |
+
user: str = Field(..., alias="MARIADB_USER")
|
13 |
+
password: str = Field(..., alias="MARIADB_PASSWORD")
|
14 |
+
database: str = Field(..., alias="MARIADB_DATABASE")
|
15 |
+
|
16 |
+
|
17 |
+
class EmbeddingSettings(BaseSettings):
|
18 |
+
provider: EmbeddingProviderType = Field(
|
19 |
+
default=EmbeddingProviderType.OPENAI, alias="EMBEDDING_PROVIDER"
|
20 |
+
)
|
21 |
+
model: str = Field(default="text-embedding-3-small", alias="EMBEDDING_MODEL")
|
22 |
+
openai_api_key: Optional[str] = Field(default=None, alias="OPENAI_API_KEY")
|