Josaphat12-tech commited on
Commit
5dcdf26
·
1 Parent(s): 6f444ab

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ import json
5
+
6
+ # let's load the image label file
7
+
8
+ with open("/content/drive/MyDrive/imagenet_labels.json") as labels_file:
9
+ labels = json.load(labels_file)
10
+
11
+ mobile_net = tf.keras.applications.MobileNetV2()
12
+
13
+ # let's create a function to classify an image
14
+ def image_classifier(img):
15
+ arr = np.expand_dims(img, axis=0)
16
+ arr = tf.keras.applications.mobilenet.preprocess_input(arr)
17
+ predictions = mobile_net.predict(arr).flatten()
18
+ return {labels[i]:float(predictions[i]) for i in range(1000)}
19
+
20
+
21
+ iface = gr.Interface(image_classifier,
22
+ gr.inputs.Image(shape=(224,224)),
23
+ gr.outputs.Label(num_top_classes = 5),
24
+ capture_session = True,
25
+ interpretation = 'default',
26
+ title="JBimageCap Program For Image Caption",
27
+ description = "This Project is called 'JBImageCap' . This project service classifies elements in images into intuitive categories, such as people, objects, environments, activities, or artwork, to define image themes and application scenarios. It supports on-cloud recognition modes. And this project has been created by Bitingo Josaphat JB",
28
+ examples = [
29
+ ["/content/drive/MyDrive/images/cheetah1.jpg"],
30
+ ["/content/drive/MyDrive/images/IMG-20210416-WA0047.jpg"],
31
+ ["/content/drive/MyDrive/images/IMG-20210416-WA0042.jpg"],
32
+ ["/content/drive/MyDrive/images/IMG-20210507-WA0022.jpg"],
33
+ ["/content/drive/MyDrive/images/download.jpg"],
34
+ ["/content/drive/MyDrive/images/lion.jpg"]
35
+ ])
36
+
37
+ # Now Lemme launch My App From the Colab Environment
38
+ iface.launch()