import cv2 import os import numpy as np import multiprocessing import argparse from os.path import join as pjoin def get_args(): parser = argparse.ArgumentParser(description="Processes a single image for UI element detection.") parser.add_argument('--run_id', type=str, required=True, help='A unique identifier for the processing run.') return parser.parse_args() def resize_height_by_longest_edge(img_path, resize_length=800): org = cv2.imread(img_path) height, width = org.shape[:2] if height > width: return resize_length else: return int(resize_length * (height / width)) def color_tips(): color_map = {'Text': (0, 0, 255), 'Compo': (0, 255, 0), 'Block': (0, 255, 255), 'Text Content': (255, 0, 255)} board = np.zeros((200, 200, 3), dtype=np.uint8) board[:50, :, :] = (0, 0, 255) board[50:100, :, :] = (0, 255, 0) board[100:150, :, :] = (255, 0, 255) board[150:200, :, :] = (0, 255, 255) cv2.putText(board, 'Text', (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2) cv2.putText(board, 'Non-text Compo', (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2) cv2.putText(board, "Compo's Text Content", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2) cv2.putText(board, "Block", (10, 170), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2) cv2.imshow('colors', board) if __name__ == '__main__': args = get_args() # --- Dynamic Path Construction --- # Construct paths based on the provided run_id base_dir = os.path.dirname(os.path.abspath(__file__)) run_id = args.run_id # The temporary directory for this specific run tmp_dir = os.path.join(base_dir, '..', 'data', 'tmp', run_id) # Input image path input_path_img = os.path.join(tmp_dir, f"{run_id}.png") # Output directory for this script's results output_root = tmp_dir # All results (ip, ocr, etc.) will go into the run's tmp subdir. if not os.path.exists(input_path_img): print(f"Error: Input image not found at {input_path_img}") exit(1) print(f"--- Starting UIED processing for run_id: {run_id} ---") print(f"Input image: {input_path_img}") print(f"Output root: {output_root}") # Set multiprocessing start method to 'spawn' for macOS compatibility. # This must be done at the very beginning of the main block. try: multiprocessing.set_start_method('spawn', force=True) except RuntimeError: pass # It's OK if it's already set. # Disable multiprocessing for PaddleOCR to avoid segmentation fault on macOS import os os.environ['PADDLE_USE_MULTIPROCESSING'] = '0' ''' ele:min-grad: gradient threshold to produce binary map ele:ffl-block: fill-flood threshold ele:min-ele-area: minimum area for selected elements ele:merge-contained-ele: if True, merge elements contained in others text:max-word-inline-gap: words with smaller distance than the gap are counted as a line text:max-line-gap: lines with smaller distance than the gap are counted as a paragraph Tips: 1. Larger *min-grad* produces fine-grained binary-map while prone to over-segment element to small pieces 2. Smaller *min-ele-area* leaves tiny elements while prone to produce noises 3. If not *merge-contained-ele*, the elements inside others will be recognized, while prone to produce noises 4. The *max-word-inline-gap* and *max-line-gap* should be dependent on the input image size and resolution mobile: {'min-grad':4, 'ffl-block':5, 'min-ele-area':50, 'max-word-inline-gap':6, 'max-line-gap':1} web : {'min-grad':3, 'ffl-block':5, 'min-ele-area':25, 'max-word-inline-gap':4, 'max-line-gap':4} ''' key_params = {'min-grad':10, 'ffl-block':5, 'min-ele-area':50, 'merge-contained-ele':True, 'merge-line-to-paragraph':False, 'remove-bar':True} # set input image path # input_path_img = 'data/test1.png' # output_root = 'data' resized_height = resize_height_by_longest_edge(input_path_img, resize_length=800) # color_tips() # This shows a window, which is not suitable for a script. is_ip = True is_clf = False is_ocr = False is_merge = False if is_ocr: import detect_text.text_detection as text os.makedirs(pjoin(output_root, 'ocr'), exist_ok=True) text.text_detection(input_path_img, output_root, show=True, method='paddle') if is_ip: import detect_compo.ip_region_proposal as ip os.makedirs(pjoin(output_root, 'ip'), exist_ok=True) # switch of the classification func classifier = None if is_clf: classifier = {} from cnn.CNN import CNN # classifier['Image'] = CNN('Image') classifier['Elements'] = CNN('Elements') # classifier['Noise'] = CNN('Noise') ip.compo_detection(input_path_img, output_root, key_params, classifier=classifier, resize_by_height=resized_height, show=False) if is_merge: import detect_merge.merge as merge os.makedirs(pjoin(output_root, 'merge'), exist_ok=True) name = input_path_img.split('/')[-1][:-4] compo_path = pjoin(output_root, 'ip', str(name) + '.json') ocr_path = pjoin(output_root, 'ocr', str(name) + '.json') merge.merge(input_path_img, compo_path, ocr_path, pjoin(output_root, 'merge'), is_remove_bar=key_params['remove-bar'], is_paragraph=key_params['merge-line-to-paragraph'], show=False) print(f"--- UIED processing complete for run_id: {run_id} ---")