from tqdm import tqdm import json import cv2 from os.path import join as pjoin from config.CONFIG_UIED import Config C = Config() def draw_bounding_box_class(org, components, color=C.COLOR, line=2, show=False, write_path=None): """ Draw bounding box of components with their classes on the original image :param org: original image :param components: bbox [(column_min, row_min, column_max, row_max)] -> top_left: (column_min, row_min) -> bottom_right: (column_max, row_max) :param color_map: colors mapping to different components :param line: line thickness :param compo_class: classes matching the corners of components :param show: show or not :return: labeled image """ board = org.copy() bboxes = components['bboxes'] categories = components['categories'] for i in range(len(bboxes)): bbox = bboxes[i] category = categories[i] board = cv2.rectangle(board, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color[C.CLASS_MAP[str(category)]], line) board = cv2.putText(board, C.CLASS_MAP[str(category)], (bbox[0]+5, bbox[1]+20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color[C.CLASS_MAP[str(category)]], 2) if show: cv2.imshow('a', cv2.resize(board, (500, 1000))) cv2.waitKey(0) if write_path is not None: cv2.imwrite(write_path, board) return board def load_ground_truth_json(gt_file, no_text=True): def get_img_by_id(img_id): for image in images: if image['id'] == img_id: return image['file_name'].split('/')[-1][:-4], (image['height'], image['width']) def cvt_bbox(bbox): ''' :param bbox: [x,y,width,height] :return: [col_min, row_min, col_max, row_max] ''' bbox = [int(b) for b in bbox] return [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]] data = json.load(open(gt_file, 'r')) images = data['images'] annots = data['annotations'] compos = {} print('Loading %d ground truth' % len(annots)) for annot in tqdm(annots): img_name, size = get_img_by_id(annot['image_id']) if no_text and int(annot['category_id']) == 14: compos[img_name] = {'bboxes': [], 'categories': [], 'size': size} continue if img_name not in compos: compos[img_name] = {'bboxes': [cvt_bbox(annot['bbox'])], 'categories': [annot['category_id']], 'size':size} else: compos[img_name]['bboxes'].append(cvt_bbox(annot['bbox'])) compos[img_name]['categories'].append(annot['category_id']) return compos def view_gt_all(gt, img_root): for img_id in gt: compos = gt[img_id] img = cv2.imread(pjoin(img_root, img_id + '.jpg')) print(pjoin(img_root, img_id + '.jpg')) draw_bounding_box_class(img, compos, show=True) def view_gt_single(gt, img_root, img_id): img_id = str(img_id) compos = gt[img_id] img = cv2.imread(pjoin(img_root, img_id + '.jpg')) print(pjoin(img_root, img_id + '.jpg')) draw_bounding_box_class(img, compos, show=True) gt = load_ground_truth_json('E:\\Mulong\\Datasets\\rico\\instances_test.json', no_text=False) # view_gt_all(gt, 'E:\\Mulong\\Datasets\\rico\\combined') view_gt_single(gt, 'E:\\Mulong\\Datasets\\rico\\combined', 670)