import json import numpy as np import cv2 from glob import glob from os.path import join as pjoin from tqdm import tqdm def resize_label(bboxes, d_height, gt_height, bias=0): bboxes_new = [] scale = gt_height / d_height for bbox in bboxes: bbox = [int(b * scale + bias) for b in bbox] bboxes_new.append(bbox) return bboxes_new def draw_bounding_box(org, corners, color=(0, 255, 0), line=2, show=False): board = cv2.resize(org, (608, 1024)) for i in range(len(corners)): board = cv2.rectangle(board, (corners[i][0], corners[i][1]), (corners[i][2], corners[i][3]), color, line) if show: cv2.imshow('a', board) cv2.waitKey(0) return board def load_detect_result_json(reslut_file_root, shrink=3): def is_bottom_or_top(corner): column_min, row_min, column_max, row_max = corner if row_max < 36 or row_min > 725: return True return False result_files = glob(pjoin(reslut_file_root, '*.json')) compos_reform = {} print('Loading %d detection results' % len(result_files)) for reslut_file in tqdm(result_files): img_name = reslut_file.split('\\')[-1].split('.')[0] compos = json.load(open(reslut_file, 'r'))['compos'] for compo in compos: if compo['column_max'] - compo['column_min'] < 10 or compo['row_max'] - compo['row_min'] < 10: continue if is_bottom_or_top((compo['column_min'], compo['row_min'], compo['column_max'], compo['row_max'])): continue if img_name not in compos_reform: compos_reform[img_name] = {'bboxes': [ [compo['column_min'] + shrink, compo['row_min'] + shrink, compo['column_max'] - shrink, compo['row_max'] - shrink]], 'categories': [compo['category']]} else: compos_reform[img_name]['bboxes'].append( [compo['column_min'] + shrink, compo['row_min'] + shrink, compo['column_max'] - shrink, compo['row_max'] - shrink]) compos_reform[img_name]['categories'].append(compo['category']) return compos_reform def load_ground_truth_json(gt_file): def get_img_by_id(img_id): for image in images: if image['id'] == img_id: return image['file_name'].split('/')[-1][:-4], (image['height'], image['width']) def cvt_bbox(bbox): ''' :param bbox: [x,y,width,height] :return: [col_min, row_min, col_max, row_max] ''' bbox = [int(b) for b in bbox] return [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]] data = json.load(open(gt_file, 'r')) images = data['images'] annots = data['annotations'] compos = {} print('Loading %d ground truth' % len(annots)) for annot in tqdm(annots): img_name, size = get_img_by_id(annot['image_id']) if img_name not in compos: compos[img_name] = {'bboxes': [cvt_bbox(annot['bbox'])], 'categories': [annot['category_id']], 'size': size} else: compos[img_name]['bboxes'].append(cvt_bbox(annot['bbox'])) compos[img_name]['categories'].append(annot['category_id']) return compos def eval(detection, ground_truth, img_root, show=True, no_text=False, only_text=False): def compo_filter(compos, flag): if not no_text and not only_text: return compos compos_new = {'bboxes': [], 'categories': []} for k, category in enumerate(compos['categories']): if only_text: if flag == 'det' and category != 'TextView': continue if flag == 'gt' and int(category) != 14: continue elif no_text: if flag == 'det' and category == 'TextView': continue if flag == 'gt' and int(category) == 14: continue compos_new['bboxes'].append(compos['bboxes'][k]) compos_new['categories'].append(category) return compos_new def match(org, d_bbox, gt_bboxes, matched): ''' :param matched: mark if the ground truth component is matched :param d_bbox: [col_min, row_min, col_max, row_max] :param gt_bboxes: list of ground truth [[col_min, row_min, col_max, row_max]] :return: Boolean: if IOU large enough or detected box is contained by ground truth ''' area_d = (d_bbox[2] - d_bbox[0]) * (d_bbox[3] - d_bbox[1]) size = -1 for i, gt_bbox in enumerate(gt_bboxes): if matched[i] == 0: continue area_gt = (gt_bbox[2] - gt_bbox[0]) * (gt_bbox[3] - gt_bbox[1]) col_min = max(d_bbox[0], gt_bbox[0]) row_min = max(d_bbox[1], gt_bbox[1]) col_max = min(d_bbox[2], gt_bbox[2]) row_max = min(d_bbox[3], gt_bbox[3]) # if not intersected, area intersection should be 0 w = max(0, col_max - col_min) h = max(0, row_max - row_min) area_inter = w * h if area_inter == 0: continue iod = area_inter / area_d iou = area_inter / (area_d + area_gt - area_inter) # if show: # cv2.putText(org, (str(round(iou, 2)) + ',' + str(round(iod, 2))), (d_bbox[0], d_bbox[1]), # cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) if iou > 0.9 or iod == 1: if (gt_bbox[2] - gt_bbox[0]) < 64: size = 0 elif 64 < (gt_bbox[2] - gt_bbox[0]) < 128: size = 1 elif (gt_bbox[2] - gt_bbox[0]) > 128: size = 2 matched[i] = 0 return True, size return False, size amount = len(detection) TP, FP, FN = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] for i, image_id in enumerate(detection): img = cv2.imread(pjoin(img_root, image_id + '.jpg')) d_compos = detection[image_id] if image_id not in ground_truth: continue gt_compos = ground_truth[image_id] org_height = gt_compos['size'][0] d_compos = compo_filter(d_compos, 'det') gt_compos = compo_filter(gt_compos, 'gt') d_compos['bboxes'] = resize_label(d_compos['bboxes'], 800, 1024) gt_compos['bboxes'] = resize_label(gt_compos['bboxes'], org_height, 1024) matched = np.ones(len(gt_compos['bboxes']), dtype=int) for d_bbox in d_compos['bboxes']: m, size = match(img, d_bbox, gt_compos['bboxes'], matched) if m: TP[size] += 1 else: h = d_bbox[2] - d_bbox[0] if h < 64: size = 0 elif 64 < h < 128: size = 1 elif h > 128: size = 2 FP[size] += 1 for i in range(len(matched)): if matched[i] == 1: gt_bboxes = gt_compos['bboxes'] h = gt_bboxes[i][2] - gt_bboxes[i][0] if h < 64: size = 0 elif 64 < h < 128: size = 1 elif h > 128: size = 2 FN[size] += 1 if show: print(image_id + '.jpg') # cv2.imshow('org', cv2.resize(img, (500, 1000))) broad = draw_bounding_box(img, d_compos['bboxes'], color=(255, 0, 0), line=3) draw_bounding_box(broad, gt_compos['bboxes'], color=(0, 0, 255), show=True, line=2) if i % 200 == 0: precision = [round(TP[i] / (TP[i] + FP[i]),3) for i in range(len(TP))] recall = [round(TP[i] / (TP[i] + FN[i]),3) for i in range(len(TP))] f1 = [round(2 * (precision[i] * recall[i]) / (precision[i] + recall[i]), 3) for i in range(3)] print( '[%d/%d] TP:%s, FP:%s, FN:%s, Precesion:%s, Recall:%s, F1:%s' % ( i, amount, str(TP), str(FP), str(FN), str(precision), str(recall), str(f1))) precision = [round(TP[i] / (TP[i] + FP[i]),3) for i in range(len(TP))] recall = [round(TP[i] / (TP[i] + FN[i]),3) for i in range(len(TP))] f1 = [round(2 * (precision[i] * recall[i]) / (precision[i] + recall[i]), 3) for i in range(3)] print( '[%d/%d] TP:%s, FP:%s, FN:%s, Precesion:%s, Recall:%s, F1:%s' % ( i, amount, str(TP), str(FP), str(FN), str(precision), str(recall), str(f1))) # print("Average precision:%.4f; Average recall:%.3f" % (sum(pres)/len(pres), sum(recalls)/len(recalls))) no_text = False only_text = False detect = load_detect_result_json('E:\\Mulong\\Result\\rico\\rico_uied\\rico_new_uied_v3\\merge') gt = load_ground_truth_json('E:\\Mulong\\Datasets\\rico\\instances_test.json') eval(detect, gt, 'E:\\Mulong\\Datasets\\rico\\combined', show=False, no_text=no_text, only_text=only_text)