Jimmyzheng-10's picture
Add app.py and the screencoder repo
a383d0e
raw
history blame
5.7 kB
import detect_text.ocr as ocr
from detect_text.Text import Text
import numpy as np
import cv2
import json
import time
import os
from os.path import join as pjoin
def save_detection_json(file_path, texts, img_shape):
f_out = open(file_path, 'w')
output = {'img_shape': img_shape, 'texts': []}
for text in texts:
c = {'id': text.id, 'content': text.content}
loc = text.location
c['column_min'], c['row_min'], c['column_max'], c['row_max'] = loc['left'], loc['top'], loc['right'], loc['bottom']
c['width'] = text.width
c['height'] = text.height
output['texts'].append(c)
json.dump(output, f_out, indent=4)
def visualize_texts(org_img, texts, shown_resize_height=None, show=False, write_path=None):
img = org_img.copy()
for text in texts:
text.visualize_element(img, line=2)
img_resize = img
if shown_resize_height is not None:
img_resize = cv2.resize(img, (int(shown_resize_height * (img.shape[1]/img.shape[0])), shown_resize_height))
if show:
cv2.imshow('texts', img_resize)
cv2.waitKey(0)
cv2.destroyWindow('texts')
if write_path is not None:
cv2.imwrite(write_path, img)
def text_sentences_recognition(texts):
'''
Merge separate words detected by Google ocr into a sentence
'''
changed = True
while changed:
changed = False
temp_set = []
for text_a in texts:
merged = False
for text_b in temp_set:
if text_a.is_on_same_line(text_b, 'h', bias_justify=0.2 * min(text_a.height, text_b.height), bias_gap=2 * max(text_a.word_width, text_b.word_width)):
text_b.merge_text(text_a)
merged = True
changed = True
break
if not merged:
temp_set.append(text_a)
texts = temp_set.copy()
for i, text in enumerate(texts):
text.id = i
return texts
def merge_intersected_texts(texts):
'''
Merge intersected texts (sentences or words)
'''
changed = True
while changed:
changed = False
temp_set = []
for text_a in texts:
merged = False
for text_b in temp_set:
if text_a.is_intersected(text_b, bias=2):
text_b.merge_text(text_a)
merged = True
changed = True
break
if not merged:
temp_set.append(text_a)
texts = temp_set.copy()
return texts
def text_cvt_orc_format(ocr_result):
texts = []
if ocr_result is not None:
for i, result in enumerate(ocr_result):
error = False
x_coordinates = []
y_coordinates = []
text_location = result['boundingPoly']['vertices']
content = result['description']
for loc in text_location:
if 'x' not in loc or 'y' not in loc:
error = True
break
x_coordinates.append(loc['x'])
y_coordinates.append(loc['y'])
if error: continue
location = {'left': min(x_coordinates), 'top': min(y_coordinates),
'right': max(x_coordinates), 'bottom': max(y_coordinates)}
texts.append(Text(i, content, location))
return texts
def text_cvt_orc_format_paddle(paddle_result):
texts = []
for i, line in enumerate(paddle_result):
points = np.array(line[0])
location = {'left': int(min(points[:, 0])), 'top': int(min(points[:, 1])), 'right': int(max(points[:, 0])),
'bottom': int(max(points[:, 1]))}
content = line[1][0]
texts.append(Text(i, content, location))
return texts
def text_filter_noise(texts):
valid_texts = []
for text in texts:
if len(text.content) <= 1 and text.content.lower() not in ['a', ',', '.', '!', '?', '$', '%', ':', '&', '+']:
continue
valid_texts.append(text)
return valid_texts
def text_detection(input_file='../data/input/30800.jpg', output_file='../data/output', show=False, method='paddle', paddle_model=None):
'''
:param method: google or paddle
:param paddle_model: the preload paddle model for paddle ocr
'''
start = time.perf_counter()
name = input_file.split('/')[-1][:-4]
ocr_root = pjoin(output_file, 'ocr')
img = cv2.imread(input_file)
if method == 'google':
print('*** Detect Text through Google OCR ***')
ocr_result = ocr.ocr_detection_google(input_file)
texts = text_cvt_orc_format(ocr_result)
texts = merge_intersected_texts(texts)
texts = text_filter_noise(texts)
texts = text_sentences_recognition(texts)
elif method == 'paddle':
# The import of the paddle ocr can be separate to the beginning of the program if you decide to use this method
from paddleocr import PaddleOCR
print('*** Detect Text through Paddle OCR ***')
if paddle_model is None:
paddle_model = PaddleOCR(use_angle_cls=True, lang="ch")
result = paddle_model.ocr(input_file)
texts = text_cvt_orc_format_paddle(result)
else:
raise ValueError('Method has to be "google" or "paddle"')
visualize_texts(img, texts, shown_resize_height=800, show=show, write_path=pjoin(ocr_root, name+'.png'))
save_detection_json(pjoin(ocr_root, name+'.json'), texts, img.shape)
print("[Text Detection Completed in %.3f s] Input: %s Output: %s" % (time.perf_counter() - start, input_file, pjoin(ocr_root, name+'.json')))
# text_detection()