Spaces:
Running
Running
File size: 11,873 Bytes
a383d0e c4cfc0a a383d0e c4cfc0a a383d0e c4cfc0a a383d0e c4cfc0a a383d0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import os
import time
from openai import OpenAI
from volcenginesdkarkruntime import Ark
import base64
import io
from PIL import Image, ImageDraw
import cv2
import numpy as np
def encode_image(image):
if type(image) == str:
print(f"Debug - encode_image: trying to encode {image}")
print(f"Debug - encode_image: file exists: {os.path.exists(image)}")
if os.path.exists(image):
print(f"Debug - encode_image: file size: {os.path.getsize(image)} bytes")
try:
with open(image, "rb") as image_file:
encoding = base64.b64encode(image_file.read()).decode('utf-8')
print(f"Debug - encode_image: successfully encoded, length: {len(encoding)}")
return encoding
except Exception as e:
print(f"Error encoding image {image}: {e}")
return None
else:
try:
buffered = io.BytesIO()
image.save(buffered, format="PNG")
encoding = base64.b64encode(buffered.getvalue()).decode('utf-8')
print(f"Debug - encode_image: successfully encoded PIL image, length: {len(encoding)}")
return encoding
except Exception as e:
print(f"Error encoding PIL image: {e}")
return None
def image_mask(image_path: str, bbox_normalized: tuple[int, int, int, int]) -> Image.Image:
"""Creates a mask on the image in the specified normalized bounding box."""
image = Image.open(image_path)
masked_image = image.copy()
w, h = image.size
# Convert normalized coordinates to pixel coordinates for drawing
bbox_pixels = (
int(bbox_normalized[0] * w / 1000),
int(bbox_normalized[1] * h / 1000),
int(bbox_normalized[2] * w / 1000),
int(bbox_normalized[3] * h / 1000)
)
draw = ImageDraw.Draw(masked_image)
draw.rectangle(bbox_pixels, fill=(255, 255, 255)) # Pure white
return masked_image
def projection_analysis(image_path: str, bbox_normalized: tuple[int, int, int, int]) -> dict:
"""
Performs projection analysis on a specified normalized bounding box area.
All returned coordinates are also normalized.
"""
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to read image {image_path}")
return {}
h, w = image.shape[:2]
# Convert normalized bbox to pixel coordinates for cropping
bbox_pixels = (
int(bbox_normalized[0] * w / 1000),
int(bbox_normalized[1] * h / 1000),
int(bbox_normalized[2] * w / 1000),
int(bbox_normalized[3] * h / 1000)
)
x1, y1, x2, y2 = bbox_pixels
roi = image[y1:y2, x1:x2]
if roi.size == 0:
print(f"Error: Invalid bbox region {bbox_pixels}")
return {}
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# Perform projection analysis (this part operates on pixels within the ROI)
horizontal_projection = np.sum(binary, axis=1)
vertical_projection = np.sum(binary, axis=0)
# Find groups and convert their coordinates back to normalized space
horizontal_groups = _find_groups_and_normalize(horizontal_projection, 'horizontal', bbox_normalized, w, h)
vertical_groups = _find_groups_and_normalize(vertical_projection, 'vertical', bbox_normalized, w, h)
return {
'horizontal_groups': horizontal_groups,
'vertical_groups': vertical_groups,
'bbox_normalized': bbox_normalized,
}
def _find_groups_and_normalize(projection: np.ndarray, direction: str,
bbox_normalized: tuple[int, int, int, int],
image_width: int, image_height: int,
min_group_size_px: int = 5, threshold_ratio: float = 0.1) -> list:
"""
Finds contiguous groups from projection data and returns them in normalized coordinates.
"""
threshold = np.max(projection) * threshold_ratio
non_zero_indices = np.where(projection > threshold)[0]
if len(non_zero_indices) == 0:
return []
groups_px = []
start_px = non_zero_indices[0]
for i in range(1, len(non_zero_indices)):
if non_zero_indices[i] > non_zero_indices[i-1] + 1:
if non_zero_indices[i-1] - start_px >= min_group_size_px:
groups_px.append((start_px, non_zero_indices[i-1]))
start_px = non_zero_indices[i]
if non_zero_indices[-1] - start_px >= min_group_size_px:
groups_px.append((start_px, non_zero_indices[-1]))
# Convert pixel groups (relative to ROI) to normalized coordinates (relative to full image)
norm_groups = []
roi_x1_norm, roi_y1_norm, roi_x2_norm, roi_y2_norm = bbox_normalized
roi_w_norm = roi_x2_norm - roi_x1_norm
roi_h_norm = roi_y2_norm - roi_y1_norm
roi_w_px = int(roi_w_norm * image_width / 1000)
roi_h_px = int(roi_h_norm * image_height / 1000)
for start_px, end_px in groups_px:
if direction == 'horizontal':
start_norm = roi_y1_norm + int(start_px * roi_h_norm / roi_h_px)
end_norm = roi_y1_norm + int(end_px * roi_h_norm / roi_h_px)
norm_groups.append((roi_x1_norm, roi_x2_norm, start_norm, end_norm))
else: # vertical
start_norm = roi_x1_norm + int(start_px * roi_w_norm / roi_w_px)
end_norm = roi_x1_norm + int(end_px * roi_w_norm / roi_w_px)
norm_groups.append((start_norm, end_norm, roi_y1_norm, roi_y2_norm))
return norm_groups
def visualize_projection_analysis(image_path: str, analysis_result: dict,
save_path: str = None) -> str:
"""
Visualizes the results of a completed projection analysis.
This function takes the analysis result dictionary and draws it on the image.
"""
if not analysis_result:
print("Error: Analysis result is empty.")
return ""
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to read image for visualization: {image_path}")
return ""
h, w = image.shape[:2]
vis_image = image.copy()
bbox_normalized = analysis_result.get('bbox_normalized')
if not bbox_normalized:
print("Error: 'bbox_normalized' not found in analysis result.")
return ""
# Convert normalized bbox to pixel coordinates for drawing the main ROI
x1, y1, x2, y2 = (
int(bbox_normalized[0] * w / 1000),
int(bbox_normalized[1] * h / 1000),
int(bbox_normalized[2] * w / 1000),
int(bbox_normalized[3] * h / 1000)
)
cv2.rectangle(vis_image, (x1, y1), (x2, y2), (0, 255, 0), 2) # Green for main ROI
# Draw horizontal groups (Blue)
for i, group_norm in enumerate(analysis_result.get('horizontal_groups', [])):
g_x1, g_y1, g_x2, g_y2 = (
int(group_norm[0] * w / 1000),
int(group_norm[1] * h / 1000),
int(group_norm[2] * w / 1000),
int(group_norm[3] * h / 1000)
)
cv2.rectangle(vis_image, (g_x1, g_y1), (g_x2, g_y2), (255, 0, 0), 1)
cv2.putText(vis_image, f'H{i}', (g_x1, g_y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
# Draw vertical groups (Red)
for i, group_norm in enumerate(analysis_result.get('vertical_groups', [])):
g_x1, g_y1, g_x2, g_y2 = (
int(group_norm[0] * w / 1000),
int(group_norm[1] * h / 1000),
int(group_norm[2] * w / 1000),
int(group_norm[3] * h / 1000)
)
cv2.rectangle(vis_image, (g_x1, g_y1), (g_x2, g_y2), (0, 0, 255), 1)
cv2.putText(vis_image, f'V{i}', (g_x1, g_y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
if save_path is None:
base_name = os.path.splitext(os.path.basename(image_path))[0]
save_path = f"data/{base_name}_projection_analysis.png"
os.makedirs(os.path.dirname(save_path), exist_ok=True)
if cv2.imwrite(save_path, vis_image):
print(f"Projection analysis visualization saved to: {save_path}")
return save_path
else:
print("Error: Failed to save visualization")
return ""
class Bot:
def __init__(self, key_path, patience=3) -> None:
if os.path.exists(key_path):
with open(key_path, "r") as f:
self.key = f.read().replace("\n", "")
else:
self.key = key_path
self.patience = patience
def ask(self):
raise NotImplementedError
def try_ask(self, question, image_encoding=None, verbose=False):
for i in range(self.patience):
try:
return self.ask(question, image_encoding, verbose)
except Exception as e:
print(e, "waiting for 5 seconds")
time.sleep(5)
return None
class Doubao(Bot):
def __init__(self, key_path, patience=3, model="doubao-1.5-thinking-vision-pro-250428") -> None:
super().__init__(key_path, patience)
self.client = Ark(api_key=self.key)
self.model = model
def ask(self, question, image_encoding=None, verbose=False):
if image_encoding:
content = {
"role": "user",
"content": [
{"type": "text", "text": question},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{image_encoding}",
},
},
],
}
else:
content = {"role": "user", "content": question}
response = self.client.chat.completions.create(
model=self.model,
messages=[content],
max_tokens=4096,
temperature=0,
)
response = response.choices[0].message.content
if verbose:
print("####################################")
print("question:\n", question)
print("####################################")
print("response:\n", response)
# print("seed used: 42")
# img = base64.b64decode(image_encoding)
# img = Image.open(io.BytesIO(img))
# img.show()
return response
class Qwen_2_5_VL(Bot):
def __init__(self, key_path, patience=3, model="qwen2.5-vl-32b-instruct") -> None:
super().__init__(key_path, patience)
self.client = OpenAI(api_key=self.key, base_url="https://dashscope.aliyuncs.com/compatible-mode/v1")
self.name = model
def ask(self, question, image_encoding=None, verbose=False):
if image_encoding:
content = {
"role": "user",
"content": [
{"type": "text", "text": question},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{image_encoding}"
}
}
]
}
else:
content = {"role": "user", "content": question}
response = self.client.chat.completions.create(
model=self.name,
messages=[content],
max_tokens=4096,
temperature=0,
seed=42,
)
response = response.choices[0].message.content
if verbose:
print("####################################")
print("question:\n", question)
print("####################################")
print("response:\n", response)
print("seed used: 42")
return response
|