#!/usr/bin/env python3 """ Qwen2.5-Omni Complete Multimodal Demo A comprehensive Gradio interface for the Qwen2.5-Omni-3B multimodal AI model Optimized for Apple Silicon (MPS) with efficient memory management """ import os import gc import sys import time import signal import warnings from typing import List, Dict, Any, Optional, Tuple, Union import tempfile import soundfile as sf # Suppress warnings for cleaner output warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", category=UserWarning) import torch import numpy as np import gradio as gr from PIL import Image # Global variables for model and processor model = None processor = None device = None def cleanup_resources(): """Clean up model and free memory""" global model, processor try: if model is not None: del model model = None if processor is not None: del processor processor = None # Force garbage collection gc.collect() # Clear CUDA/MPS cache if available if torch.cuda.is_available(): torch.cuda.empty_cache() elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available(): torch.mps.empty_cache() print("โœ… Resources cleaned up successfully") except Exception as e: print(f"โš ๏ธ Warning during cleanup: {e}") def signal_handler(signum, frame): """Handle interrupt signals gracefully""" print("\n๐Ÿ›‘ Interrupt received, cleaning up...") cleanup_resources() sys.exit(0) # Register signal handlers signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) def load_model(): """Load the Qwen2.5-Omni model and processor""" global model, processor, device if model is not None: return "โœ… Model already loaded!" try: # Check device if torch.backends.mps.is_available(): device = torch.device("mps") device_info = "๐Ÿš€ Using Apple Silicon MPS acceleration" else: device = torch.device("cpu") device_info = "โš ๏ธ Using CPU (MPS not available)" # Import the specific Qwen2.5-Omni classes from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor # Load processor with optimizations processor = Qwen2_5OmniProcessor.from_pretrained( "Qwen/Qwen2.5-Omni-3B", trust_remote_code=True, use_fast=True # Use fast tokenizer if available ) # Load model with memory-efficient settings - keep bfloat16 for all functionalities model = Qwen2_5OmniForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-Omni-3B", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto" if device.type != "mps" else None, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="sdpa" ) # Immediately disable the audio generation module to prevent any initialization overhead model.disable_talker() print("๐ŸŽค Talker module disabled immediately after loading to optimize performance") # Explicitly move to device for MPS while keeping bfloat16 if device.type == "mps": model = model.to(device=device, dtype=torch.bfloat16) print(f"๐Ÿ”ง Model loaded with dtype: bfloat16 (memory efficient)") # Clear any cached memory after loading gc.collect() gc.collect() # Run twice for good measure if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available(): torch.mps.empty_cache() return f"โœ… Model loaded successfully!\n{device_info}\nDevice: {device}" except Exception as e: return f"โŒ Error loading model: {str(e)}" def text_chat(message, history, system_prompt, temperature, max_tokens): """Handle text-only conversations correctly.""" if model is None or processor is None: history.append((message, "โŒ Error: Model is not loaded. Please load the model first.")) return history, "" if not message or not message.strip(): return history, "" try: conversation = [] if system_prompt and system_prompt.strip(): conversation.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) # Correctly process history for the model for user_msg, assistant_msg in history: if user_msg: conversation.append({"role": "user", "content": [{"type": "text", "text": user_msg}]}) if assistant_msg: # Avoid adding error messages to the model's context if not assistant_msg.startswith("โŒ Error:"): conversation.append({"role": "assistant", "content": [{"type": "text", "text": assistant_msg}]}) conversation.append({"role": "user", "content": [{"type": "text", "text": message}]}) text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) inputs = processor(text=text, return_tensors="pt", padding=True).to(device) with torch.no_grad(): generated_ids = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, do_sample=True, pad_token_id=processor.tokenizer.eos_token_id ) input_token_len = inputs["input_ids"].shape[1] response_ids = generated_ids[:, input_token_len:] response = processor.batch_decode(response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] history.append((message, response)) return history, "" except Exception as e: import traceback traceback.print_exc() error_message = f"โŒ Error in text chat: {str(e)}" history.append((message, error_message)) return history, "" def multimodal_chat(message, image, audio, history, system_prompt, temperature, max_tokens): """ Handle multimodal conversations (text, image, and audio) using the correct processor.apply_chat_template method as per the official documentation. """ global model, processor, device if model is None or processor is None: history.append((message, "โŒ Error: Model is not loaded. Please load the model first.")) return history, "" if not message.strip() and image is None and audio is None: history.append(("", "Please provide an input (text, image, or audio).")) return history, "" # --- Create a temporary directory for media files --- temp_dir = tempfile.mkdtemp() try: # --- Build the conversation history in the required format --- conversation = [] if system_prompt and system_prompt.strip(): conversation.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) # Process Gradio history into the conversation format for user_turn, bot_turn in history: # For simplicity, we only process the text part of the history. # A more robust solution would parse the [Image] and [Audio] tags # and reconstruct the full multimodal history. if user_turn: conversation.append({"role": "user", "content": [{"type": "text", "text": user_turn.replace("[Image]", "").replace("[Audio]", "").strip()}]}) if bot_turn and not bot_turn.startswith("โŒ Error:"): conversation.append({"role": "assistant", "content": [{"type": "text", "text": bot_turn}]}) # --- Prepare the current user's turn --- current_content = [] user_message_for_history = "" # Process text if message and message.strip(): current_content.append({"type": "text", "text": message}) user_message_for_history += message # Process image if image is not None: # --- FIX: Resize large images to prevent OOM errors --- MAX_PIXELS = 1024 * 1024 # 1 megapixel if image.width * image.height > MAX_PIXELS: image.thumbnail((1024, 1024), Image.Resampling.LANCZOS) temp_image_path = os.path.join(temp_dir, "temp_image.png") image.save(temp_image_path) current_content.append({"type": "image", "image": temp_image_path}) user_message_for_history += " [Image]" # Process audio if audio is not None: sample_rate, audio_data = audio temp_audio_path = os.path.join(temp_dir, "temp_audio.wav") sf.write(temp_audio_path, audio_data, sample_rate) current_content.append({"type": "audio", "audio": temp_audio_path}) user_message_for_history += " [Audio]" if not current_content: history.append(("", "Please provide some input.")) return history, "" conversation.append({"role": "user", "content": current_content}) # --- Use `apply_chat_template` as per the documentation --- # This is the single, correct way to process all modalities. inputs = processor.apply_chat_template( conversation, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", padding=True, ).to(device) # --- Generation --- with torch.no_grad(): # Note: The model's generate function does not return audio directly in this setup # We are focusing on getting the text response right first. generated_ids = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, do_sample=True, pad_token_id=processor.tokenizer.eos_token_id, # return_audio=False # This might be needed if audio output is enabled by default ) # The generate call for the full Omni model might return a tuple (text_ids, audio_wav) # We handle both cases to be safe. if isinstance(generated_ids, tuple): response_ids = generated_ids[0] else: response_ids = generated_ids input_token_len = inputs["input_ids"].shape[1] response_ids_decoded = response_ids[:, input_token_len:] response = processor.batch_decode(response_ids_decoded, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] history.append((user_message_for_history.strip(), response)) return history, "" except Exception as e: import traceback error_message = f"โŒ Multimodal chat error: {traceback.format_exc()}" print(error_message) # Print full traceback to console for debugging history.append((message, f"โŒ Error: {e}")) return history, "" finally: # --- Clean up temporary files --- if os.path.exists(temp_dir): import shutil shutil.rmtree(temp_dir) def clear_history(): """Clear chat history""" return [] def clear_model_cache(): """Clear model cache and free memory""" global model, processor try: cleanup_resources() # Clear additional caches if torch.cuda.is_available(): torch.cuda.empty_cache() elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available(): torch.mps.empty_cache() return "โœ… Cache cleared successfully! Click 'Load Model' to reload." except Exception as e: return f"โŒ Error clearing cache: {str(e)}" def create_interface(): """Create the complete Gradio interface with the fix.""" with gr.Blocks(title="Qwen2.5-Omni Multimodal Demo", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # ๐Ÿค– Qwen2.5-Omni Complete Multimodal Demo A comprehensive and corrected Gradio interface for the Qwen2.5-Omni-3B model. """) with gr.Row(): with gr.Column(scale=2): load_btn = gr.Button("๐Ÿ”„ Load Model", variant="primary") with gr.Column(scale=2): cache_clear_btn = gr.Button("๐Ÿงน Clear Cache", variant="secondary") with gr.Column(scale=3): model_status = gr.Textbox(label="Model Status", value="Model not loaded", interactive=False) load_btn.click(load_model, outputs=model_status) cache_clear_btn.click(clear_model_cache, outputs=model_status) with gr.Tabs(): with gr.Tab("๐Ÿ’ฌ Text Chat"): text_chatbot = gr.Chatbot(label="Conversation", height=450) with gr.Row(): text_msg = gr.Textbox(label="Your message", placeholder="Type your message...", scale=4, container=False) text_send = gr.Button("Send", variant="primary", scale=1) with gr.Row(): text_clear = gr.Button("Clear History") with gr.Accordion("Settings", open=False): text_system = gr.Textbox(label="System Prompt", value="You are a helpful AI assistant.") text_temp = gr.Slider(0.1, 1.5, value=0.7, label="Temperature") text_max_tokens = gr.Slider(50, 1000, value=500, label="Max New Tokens", step=50) text_send.click(text_chat, inputs=[text_msg, text_chatbot, text_system, text_temp, text_max_tokens], outputs=[text_chatbot, text_msg]) text_msg.submit(text_chat, inputs=[text_msg, text_chatbot, text_system, text_temp, text_max_tokens], outputs=[text_chatbot, text_msg]) text_clear.click(clear_history, outputs=text_chatbot) with gr.Tab("๐ŸŒŸ Multimodal Chat"): multi_chatbot = gr.Chatbot(label="Multimodal Conversation", height=450) multi_text = gr.Textbox(label="Text Message (optional)", placeholder="Describe what you want to know...", scale=4, container=False) with gr.Row(): multi_image = gr.Image(label="Upload Image (optional)", type="pil") multi_audio = gr.Audio(label="Upload Audio (optional)", type="numpy") with gr.Row(): multi_send = gr.Button("Send Multimodal Input", variant="primary") multi_clear = gr.Button("Clear History") with gr.Accordion("Settings", open=False): multi_system = gr.Textbox(label="System Prompt", value="You are Qwen, capable of understanding images, audio, and text.") multi_temp = gr.Slider(0.1, 1.5, value=0.7, label="Temperature") multi_max_tokens = gr.Slider(50, 1000, value=500, label="Max New Tokens", step=50) multi_send.click(multimodal_chat, inputs=[multi_text, multi_image, multi_audio, multi_chatbot, multi_system, multi_temp, multi_max_tokens], outputs=[multi_chatbot, multi_text]) multi_clear.click(clear_history, outputs=multi_chatbot) with gr.Tab("โ„น๏ธ Model Info"): # Placeholder for model info content gr.Markdown("Model information will be displayed here.") return demo if __name__ == "__main__": try: os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["OMP_NUM_THREADS"] = "1" demo = create_interface() print("๐Ÿš€ Starting Qwen2.5-Omni Gradio Demo...") print("๐Ÿ“‹ Memory management optimizations enabled") print("๐Ÿ”— Access the interface at: http://localhost:7860") demo.launch( server_name="0.0.0.0", server_port=7860, share=False, show_error=True, quiet=False ) except KeyboardInterrupt: print("\n๐Ÿ›‘ Shutting down gracefully...") cleanup_resources() except Exception as e: print(f"โŒ Error starting demo: {e}") cleanup_resources()