Jimmi42
Add Qwen2.5-Omni multimodal demo with working text, image, and audio processing
9c37045
#!/usr/bin/env python3
"""
Qwen2.5-Omni Complete Multimodal Demo
A comprehensive Gradio interface for the Qwen2.5-Omni-3B multimodal AI model
Optimized for Apple Silicon (MPS) with efficient memory management
"""
import os
import gc
import sys
import time
import signal
import warnings
from typing import List, Dict, Any, Optional, Tuple, Union
import tempfile
import soundfile as sf
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
import torch
import numpy as np
import gradio as gr
from PIL import Image
# Global variables for model and processor
model = None
processor = None
device = None
def cleanup_resources():
"""Clean up model and free memory"""
global model, processor
try:
if model is not None:
del model
model = None
if processor is not None:
del processor
processor = None
# Force garbage collection
gc.collect()
# Clear CUDA/MPS cache if available
if torch.cuda.is_available():
torch.cuda.empty_cache()
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
torch.mps.empty_cache()
print("βœ… Resources cleaned up successfully")
except Exception as e:
print(f"⚠️ Warning during cleanup: {e}")
def signal_handler(signum, frame):
"""Handle interrupt signals gracefully"""
print("\nπŸ›‘ Interrupt received, cleaning up...")
cleanup_resources()
sys.exit(0)
# Register signal handlers
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
def load_model():
"""Load the Qwen2.5-Omni model and processor"""
global model, processor, device
if model is not None:
return "βœ… Model already loaded!"
try:
# Check device
if torch.backends.mps.is_available():
device = torch.device("mps")
device_info = "πŸš€ Using Apple Silicon MPS acceleration"
else:
device = torch.device("cpu")
device_info = "⚠️ Using CPU (MPS not available)"
# Import the specific Qwen2.5-Omni classes
from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
# Load processor with optimizations
processor = Qwen2_5OmniProcessor.from_pretrained(
"Qwen/Qwen2.5-Omni-3B",
trust_remote_code=True,
use_fast=True # Use fast tokenizer if available
)
# Load model with memory-efficient settings - keep bfloat16 for all functionalities
model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-Omni-3B",
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto" if device.type != "mps" else None,
low_cpu_mem_usage=True,
use_safetensors=True,
attn_implementation="sdpa"
)
# Immediately disable the audio generation module to prevent any initialization overhead
model.disable_talker()
print("🎀 Talker module disabled immediately after loading to optimize performance")
# Explicitly move to device for MPS while keeping bfloat16
if device.type == "mps":
model = model.to(device=device, dtype=torch.bfloat16)
print(f"πŸ”§ Model loaded with dtype: bfloat16 (memory efficient)")
# Clear any cached memory after loading
gc.collect()
gc.collect() # Run twice for good measure
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
torch.mps.empty_cache()
return f"βœ… Model loaded successfully!\n{device_info}\nDevice: {device}"
except Exception as e:
return f"❌ Error loading model: {str(e)}"
def text_chat(message, history, system_prompt, temperature, max_tokens):
"""Handle text-only conversations correctly."""
if model is None or processor is None:
history.append((message, "❌ Error: Model is not loaded. Please load the model first."))
return history, ""
if not message or not message.strip():
return history, ""
try:
conversation = []
if system_prompt and system_prompt.strip():
conversation.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
# Correctly process history for the model
for user_msg, assistant_msg in history:
if user_msg:
conversation.append({"role": "user", "content": [{"type": "text", "text": user_msg}]})
if assistant_msg:
# Avoid adding error messages to the model's context
if not assistant_msg.startswith("❌ Error:"):
conversation.append({"role": "assistant", "content": [{"type": "text", "text": assistant_msg}]})
conversation.append({"role": "user", "content": [{"type": "text", "text": message}]})
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
inputs = processor(text=text, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
generated_ids = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
pad_token_id=processor.tokenizer.eos_token_id
)
input_token_len = inputs["input_ids"].shape[1]
response_ids = generated_ids[:, input_token_len:]
response = processor.batch_decode(response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
history.append((message, response))
return history, ""
except Exception as e:
import traceback
traceback.print_exc()
error_message = f"❌ Error in text chat: {str(e)}"
history.append((message, error_message))
return history, ""
def multimodal_chat(message, image, audio, history, system_prompt, temperature, max_tokens):
"""
Handle multimodal conversations (text, image, and audio) using the correct
processor.apply_chat_template method as per the official documentation.
"""
global model, processor, device
if model is None or processor is None:
history.append((message, "❌ Error: Model is not loaded. Please load the model first."))
return history, ""
if not message.strip() and image is None and audio is None:
history.append(("", "Please provide an input (text, image, or audio)."))
return history, ""
# --- Create a temporary directory for media files ---
temp_dir = tempfile.mkdtemp()
try:
# --- Build the conversation history in the required format ---
conversation = []
if system_prompt and system_prompt.strip():
conversation.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
# Process Gradio history into the conversation format
for user_turn, bot_turn in history:
# For simplicity, we only process the text part of the history.
# A more robust solution would parse the [Image] and [Audio] tags
# and reconstruct the full multimodal history.
if user_turn:
conversation.append({"role": "user", "content": [{"type": "text", "text": user_turn.replace("[Image]", "").replace("[Audio]", "").strip()}]})
if bot_turn and not bot_turn.startswith("❌ Error:"):
conversation.append({"role": "assistant", "content": [{"type": "text", "text": bot_turn}]})
# --- Prepare the current user's turn ---
current_content = []
user_message_for_history = ""
# Process text
if message and message.strip():
current_content.append({"type": "text", "text": message})
user_message_for_history += message
# Process image
if image is not None:
# --- FIX: Resize large images to prevent OOM errors ---
MAX_PIXELS = 1024 * 1024 # 1 megapixel
if image.width * image.height > MAX_PIXELS:
image.thumbnail((1024, 1024), Image.Resampling.LANCZOS)
temp_image_path = os.path.join(temp_dir, "temp_image.png")
image.save(temp_image_path)
current_content.append({"type": "image", "image": temp_image_path})
user_message_for_history += " [Image]"
# Process audio
if audio is not None:
sample_rate, audio_data = audio
temp_audio_path = os.path.join(temp_dir, "temp_audio.wav")
sf.write(temp_audio_path, audio_data, sample_rate)
current_content.append({"type": "audio", "audio": temp_audio_path})
user_message_for_history += " [Audio]"
if not current_content:
history.append(("", "Please provide some input."))
return history, ""
conversation.append({"role": "user", "content": current_content})
# --- Use `apply_chat_template` as per the documentation ---
# This is the single, correct way to process all modalities.
inputs = processor.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
padding=True,
).to(device)
# --- Generation ---
with torch.no_grad():
# Note: The model's generate function does not return audio directly in this setup
# We are focusing on getting the text response right first.
generated_ids = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
pad_token_id=processor.tokenizer.eos_token_id,
# return_audio=False # This might be needed if audio output is enabled by default
)
# The generate call for the full Omni model might return a tuple (text_ids, audio_wav)
# We handle both cases to be safe.
if isinstance(generated_ids, tuple):
response_ids = generated_ids[0]
else:
response_ids = generated_ids
input_token_len = inputs["input_ids"].shape[1]
response_ids_decoded = response_ids[:, input_token_len:]
response = processor.batch_decode(response_ids_decoded, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
history.append((user_message_for_history.strip(), response))
return history, ""
except Exception as e:
import traceback
error_message = f"❌ Multimodal chat error: {traceback.format_exc()}"
print(error_message) # Print full traceback to console for debugging
history.append((message, f"❌ Error: {e}"))
return history, ""
finally:
# --- Clean up temporary files ---
if os.path.exists(temp_dir):
import shutil
shutil.rmtree(temp_dir)
def clear_history():
"""Clear chat history"""
return []
def clear_model_cache():
"""Clear model cache and free memory"""
global model, processor
try:
cleanup_resources()
# Clear additional caches
if torch.cuda.is_available():
torch.cuda.empty_cache()
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
torch.mps.empty_cache()
return "βœ… Cache cleared successfully! Click 'Load Model' to reload."
except Exception as e:
return f"❌ Error clearing cache: {str(e)}"
def create_interface():
"""Create the complete Gradio interface with the fix."""
with gr.Blocks(title="Qwen2.5-Omni Multimodal Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸ€– Qwen2.5-Omni Complete Multimodal Demo
A comprehensive and corrected Gradio interface for the Qwen2.5-Omni-3B model.
""")
with gr.Row():
with gr.Column(scale=2):
load_btn = gr.Button("πŸ”„ Load Model", variant="primary")
with gr.Column(scale=2):
cache_clear_btn = gr.Button("🧹 Clear Cache", variant="secondary")
with gr.Column(scale=3):
model_status = gr.Textbox(label="Model Status", value="Model not loaded", interactive=False)
load_btn.click(load_model, outputs=model_status)
cache_clear_btn.click(clear_model_cache, outputs=model_status)
with gr.Tabs():
with gr.Tab("πŸ’¬ Text Chat"):
text_chatbot = gr.Chatbot(label="Conversation", height=450)
with gr.Row():
text_msg = gr.Textbox(label="Your message", placeholder="Type your message...", scale=4, container=False)
text_send = gr.Button("Send", variant="primary", scale=1)
with gr.Row():
text_clear = gr.Button("Clear History")
with gr.Accordion("Settings", open=False):
text_system = gr.Textbox(label="System Prompt", value="You are a helpful AI assistant.")
text_temp = gr.Slider(0.1, 1.5, value=0.7, label="Temperature")
text_max_tokens = gr.Slider(50, 1000, value=500, label="Max New Tokens", step=50)
text_send.click(text_chat, inputs=[text_msg, text_chatbot, text_system, text_temp, text_max_tokens], outputs=[text_chatbot, text_msg])
text_msg.submit(text_chat, inputs=[text_msg, text_chatbot, text_system, text_temp, text_max_tokens], outputs=[text_chatbot, text_msg])
text_clear.click(clear_history, outputs=text_chatbot)
with gr.Tab("🌟 Multimodal Chat"):
multi_chatbot = gr.Chatbot(label="Multimodal Conversation", height=450)
multi_text = gr.Textbox(label="Text Message (optional)", placeholder="Describe what you want to know...", scale=4, container=False)
with gr.Row():
multi_image = gr.Image(label="Upload Image (optional)", type="pil")
multi_audio = gr.Audio(label="Upload Audio (optional)", type="numpy")
with gr.Row():
multi_send = gr.Button("Send Multimodal Input", variant="primary")
multi_clear = gr.Button("Clear History")
with gr.Accordion("Settings", open=False):
multi_system = gr.Textbox(label="System Prompt", value="You are Qwen, capable of understanding images, audio, and text.")
multi_temp = gr.Slider(0.1, 1.5, value=0.7, label="Temperature")
multi_max_tokens = gr.Slider(50, 1000, value=500, label="Max New Tokens", step=50)
multi_send.click(multimodal_chat, inputs=[multi_text, multi_image, multi_audio, multi_chatbot, multi_system, multi_temp, multi_max_tokens], outputs=[multi_chatbot, multi_text])
multi_clear.click(clear_history, outputs=multi_chatbot)
with gr.Tab("ℹ️ Model Info"):
# Placeholder for model info content
gr.Markdown("Model information will be displayed here.")
return demo
if __name__ == "__main__":
try:
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OMP_NUM_THREADS"] = "1"
demo = create_interface()
print("πŸš€ Starting Qwen2.5-Omni Gradio Demo...")
print("πŸ“‹ Memory management optimizations enabled")
print("πŸ”— Access the interface at: http://localhost:7860")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
quiet=False
)
except KeyboardInterrupt:
print("\nπŸ›‘ Shutting down gracefully...")
cleanup_resources()
except Exception as e:
print(f"❌ Error starting demo: {e}")
cleanup_resources()