File size: 84,414 Bytes
7c4d825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 |
# ----------------------------------------------------------------------
# IMPORTS
# ----------------------------------------------------------------------
import spaces
# Simple GPU function to ensure Zero GPU detection
@spaces.GPU
def gpu_available():
import torch
return torch.cuda.is_available()
import os
import sys
import json
import time
import re
import logging
import traceback
import subprocess
from datetime import datetime
from typing import List, Dict, Optional, Union
from contextlib import asynccontextmanager
import torch
import uvicorn
import threading
import requests
import gradio
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import JSONResponse, HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
# ----------------------------------------------------------------------
# PATH SETUP
# ----------------------------------------------------------------------
script_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, script_dir)
# ----------------------------------------------------------------------
# LOCAL IMPORTS
# ----------------------------------------------------------------------
from src.utils import (
ProcessingContext,
ProcessingResponse,
ProcessedImage,
setup_logging,
get_system_info,
cleanup_memory,
custom_dumps,
LOG_LEVEL_MAP,
EMOJI_MAP
)
from src.models.model_loader import (
ensure_models_loaded,
check_hardware_environment,
MODELS_LOADED,
LOAD_ERROR,
DEVICE
)
from src.pipeline import run_functions_in_sequence, PIPELINE_STEPS
# ----------------------------------------------------------------------
# CONFIGURATION
# ----------------------------------------------------------------------
from src.config import (
API_TITLE,
API_VERSION,
API_DESCRIPTION,
API_HOST,
API_PORT,
GPU_DURATION_LONG,
STATUS_SUCCESS,
STATUS_ERROR,
STATUS_PROCESSED,
STATUS_NOT_PROCESSED,
ERROR_NO_VALID_URLS,
HTTP_OK,
HTTP_BAD_REQUEST,
HTTP_INTERNAL_SERVER_ERROR
)
# ----------------------------------------------------------------------
# IMPORT TEST CONFIGURATION
# ----------------------------------------------------------------------
try:
from tests.config import RUN_TESTS
except ImportError:
try:
sys.path.insert(0, os.path.join(script_dir, 'tests'))
from config import RUN_TESTS
except ImportError:
RUN_TESTS = False
print("Warning: Could not import RUN_TESTS from tests.config, defaulting to False")
# ----------------------------------------------------------------------
# PYDANTIC MODELS
# ----------------------------------------------------------------------
class ImageRequest(BaseModel):
urls: Union[str, List[str]] = Field(..., description="Image URL(s)")
product_type: str = Field("General", description="Product type")
options: Optional[Dict] = Field(default_factory=dict, description="Processing options")
class ShopifyWebhook(BaseModel):
data: List = Field(..., description="Shopify webhook data")
class HealthResponse(BaseModel):
status: str
timestamp: float
device: str
models_loaded: bool
gpu_available: bool = False
system_info: Dict
# ----------------------------------------------------------------------
# LIFESPAN MANAGEMENT
# ----------------------------------------------------------------------
@asynccontextmanager
async def lifespan(app: FastAPI):
setup_logging()
logging.info(f"{EMOJI_MAP['INFO']} Starting {API_TITLE} v{API_VERSION}")
# Initialize app state for quota tracking
app.state.quota_tracker = {
"requests": [],
"last_quota_error": None,
"total_gpu_seconds_used": 0,
"quota_recovery": {
"base_quota": 300, # seconds
"refill_rate": 30, # real seconds per GPU second
"half_life": 7200, # 2 hours in seconds
"last_recovery_check": time.time()
},
"rate_limiting": {
"requests_by_ip": {}, # Track requests per IP
"last_quota_error_time": 0,
"quota_cooldown_duration": 1800, # 30 minutes cooldown after quota error
"min_request_interval": 30, # Minimum 30 seconds between requests after quota error
"infrastructure_quota_state": "available", # available, exhausted, recovering
"infrastructure_quota_reset_time": 0,
"global_quota_exhausted_at": 0, # Track when global quota was exhausted
"global_consecutive_errors": 0 # Track consecutive global quota errors
}
}
check_hardware_environment()
# Load models FIRST
try:
ensure_models_loaded()
if os.getenv("SPACE_ID"):
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU environment - models will be loaded on first request")
else:
if MODELS_LOADED:
logging.info(f"{EMOJI_MAP['SUCCESS']} Models loaded successfully")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Models not fully loaded")
# Run GPU initialization for Spaces
if os.getenv("SPACE_ID"):
try:
init_gpu()
logging.info(f"{EMOJI_MAP['SUCCESS']} GPU initialization completed")
except Exception as e:
error_msg = str(e)
if "GPU task aborted" in error_msg:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization aborted (Zero GPU not ready yet) - this is normal during startup")
logging.info("GPU will be initialized on first request")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization failed: {error_msg}")
except Exception as e:
logging.error(f"{EMOJI_MAP['ERROR']} Failed to load models: {str(e)}")
# Now run tests after models are loaded
# Skip tests in Zero GPU if SKIP_STARTUP_TEST is set
skip_startup_test = os.getenv("SKIP_STARTUP_TEST", "false").lower() == "true"
if RUN_TESTS and os.environ.get("IN_PYTEST") != "true" and not skip_startup_test:
logging.info(f"{EMOJI_MAP['INFO']} Running tests at startup...")
# Run a simple test that calls the endpoint after server starts
def run_endpoint_test():
logging.info(f"{EMOJI_MAP['INFO']} Starting endpoint test with RUN_TESTS={RUN_TESTS}")
# Configuration for retries - increased for Zero GPU warming up
max_retries = 5
retry_delay = 60 # seconds - increased from 30
initial_delay = 45 # seconds - increased from 30
# Test payload
payload = {
"data": [
[{"url": "https://cdn.shopify.com/s/files/1/0505/0928/3527/files/hugging_face_test_image_shirt_product_type.jpg"}],
"Shirt"
]
}
# In Zero GPU environments, wait longer and handle GPU task abort gracefully
if os.getenv("SPACE_ID"):
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU environment detected - waiting {initial_delay}s for GPU to warm up...")
time.sleep(initial_delay) # Initial wait for Zero GPU environment to be ready
logging.info(f"{EMOJI_MAP['INFO']} Running full processing test with enhanced retry logic (max {max_retries} attempts)")
for retry in range(max_retries):
try:
logging.info(f"{EMOJI_MAP['INFO']} Testing /api/rb_and_crop endpoint (attempt {retry + 1}/{max_retries})...")
response = requests.post(
"http://localhost:7860/api/rb_and_crop",
json=payload,
timeout=180 # Longer timeout for Zero GPU
)
if response.status_code == 200:
data = response.json()
if "processed_images" in data and data["processed_images"]:
img = data["processed_images"][0]
img_status = img.get('status')
if img_status == STATUS_PROCESSED:
logging.info(f"{EMOJI_MAP['SUCCESS']} Test passed! Image status: {img_status}")
if img.get('base64_image'):
logging.info(f"{EMOJI_MAP['SUCCESS']} Image processed and base64 encoded successfully")
logging.info(f"{EMOJI_MAP['SUCCESS']} Full image processing test completed successfully")
break # Success, exit retry loop
elif img_status == STATUS_ERROR:
error_detail = img.get('error', 'Unknown error')
if "GPU task aborted" in error_detail or "GPU resources temporarily unavailable" in error_detail:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU task aborted during processing (attempt {retry + 1}/{max_retries})")
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU is warming up - this is expected during startup")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Waiting {retry_delay}s for GPU to stabilize...")
time.sleep(retry_delay)
continue
else:
logging.error(f"{EMOJI_MAP['ERROR']} Processing error: {error_detail}")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Unexpected image status: {img_status}")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Test returned no images")
elif response.status_code == 503:
# GPU resources temporarily unavailable
logging.warning(f"{EMOJI_MAP['WARNING']} GPU resources unavailable (503), will retry...")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Waiting {retry_delay}s for GPU to become available...")
time.sleep(retry_delay)
continue
elif response.status_code == 500:
# Check if it's a GPU abort error
try:
error_data = response.json()
error_detail = error_data.get('error', '')
if "GPU task aborted" in error_detail or "GPU resources temporarily unavailable" in error_detail:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU task aborted (500): {error_detail}")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU is still warming up. Waiting {retry_delay}s before retry...")
time.sleep(retry_delay)
continue
else:
logging.error(f"{EMOJI_MAP['ERROR']} Server error (500): {error_detail}")
except:
logging.error(f"{EMOJI_MAP['ERROR']} Test failed with status 500: {response.text[:200]}")
else:
logging.error(f"{EMOJI_MAP['ERROR']} Test failed with status {response.status_code}")
if response.text:
try:
error_data = response.json()
logging.error(f"Error details: {error_data.get('error', 'Unknown error')}")
except:
logging.error(f"Response: {response.text[:200]}")
except requests.exceptions.Timeout:
logging.warning(f"{EMOJI_MAP['WARNING']} Request timeout on attempt {retry + 1} - GPU might be initializing")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Waiting {retry_delay}s before retry...")
time.sleep(retry_delay)
continue
except Exception as e:
error_msg = str(e)
if "GPU task aborted" in error_msg or "503" in error_msg or "Connection refused" in error_msg:
logging.warning(f"{EMOJI_MAP['WARNING']} Connection/GPU error on attempt {retry + 1}: {error_msg}")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU warming up. Waiting {retry_delay}s before retry...")
time.sleep(retry_delay)
continue
else:
logging.error(f"{EMOJI_MAP['ERROR']} Test error: {error_msg}")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Will retry after {retry_delay}s...")
time.sleep(retry_delay)
continue
# Final health check only runs if we exhausted all retries without success
# The 'break' statement above ensures we only reach here if test failed
if retry == max_retries - 1:
logging.warning(f"{EMOJI_MAP['WARNING']} Full test failed after {max_retries} attempts")
logging.info(f"{EMOJI_MAP['INFO']} This is normal for Zero GPU during startup - the GPU needs time to warm up")
try:
response = requests.get("http://localhost:7860/health", timeout=10)
if response.status_code == 200:
data = response.json()
logging.info(f"{EMOJI_MAP['SUCCESS']} Health check passed - service is running and ready")
logging.info(f"Device: {data.get('device')}, Models loaded: {data.get('models_loaded')}")
logging.info(f"{EMOJI_MAP['INFO']} The GPU will be fully initialized on the first real request")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Health check returned status {response.status_code}")
except Exception as e:
logging.warning(f"{EMOJI_MAP['WARNING']} Health check failed: {str(e)}")
logging.info(f"{EMOJI_MAP['INFO']} Service is available and will handle requests normally once GPU warms up")
else:
# Non-Zero GPU environment - run full test after shorter delay
time.sleep(10) # Wait for server to fully start
try:
logging.info(f"{EMOJI_MAP['INFO']} Testing /api/rb_and_crop endpoint...")
# Normal timeout for non-Zero GPU environments
response = requests.post(
"http://localhost:7860/api/rb_and_crop",
json=payload,
timeout=120
)
if response.status_code == 200:
data = response.json()
if "processed_images" in data and data["processed_images"]:
img = data["processed_images"][0]
img_status = img.get('status')
if img_status == STATUS_PROCESSED:
logging.info(f"{EMOJI_MAP['SUCCESS']} Test passed! Image status: {img_status}")
if img.get('base64_image'):
logging.info(f"{EMOJI_MAP['SUCCESS']} Image processed and base64 encoded successfully")
elif img_status == STATUS_ERROR:
logging.error(f"{EMOJI_MAP['ERROR']} Processing error: {img.get('error', 'Unknown error')}")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Unexpected image status: {img_status}")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Test returned no images")
else:
logging.error(f"{EMOJI_MAP['ERROR']} Test failed with status {response.status_code}")
if response.text:
try:
error_data = response.json()
logging.error(f"Error details: {error_data.get('error', 'Unknown error')}")
except:
logging.error(f"Response: {response.text[:200]}")
except Exception as e:
logging.error(f"{EMOJI_MAP['ERROR']} Test error: {str(e)}")
# Run test in background thread
import threading
test_thread = threading.Thread(target=run_endpoint_test, daemon=True)
test_thread.start()
yield
logging.info(f"{EMOJI_MAP['INFO']} API shutdown initiated")
cleanup_memory()
# ----------------------------------------------------------------------
# FASTAPI APP
# ----------------------------------------------------------------------
app = FastAPI(
title=API_TITLE,
version=API_VERSION,
description=API_DESCRIPTION,
docs_url="/api/docs",
redoc_url="/api/redoc",
lifespan=lifespan
)
# ----------------------------------------------------------------------
# MIDDLEWARE
# ----------------------------------------------------------------------
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ----------------------------------------------------------------------
# GPU INITIALIZATION
# ----------------------------------------------------------------------
@spaces.GPU(duration=GPU_DURATION_LONG)
def init_gpu():
"""Initialize GPU for Spaces environment"""
try:
logging.info(f"{EMOJI_MAP['INFO']} Initializing GPU...")
if torch.cuda.is_available():
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception as e:
logging.warning(f"IPC collect failed, continuing anyway: {e}")
# Test GPU availability
test_tensor = torch.tensor([1.0]).cuda()
del test_tensor
logging.info(f"{EMOJI_MAP['SUCCESS']} GPU is available and working")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} CUDA not available in GPU context")
return True
except Exception as e:
error_msg = str(e)
if "GPU task aborted" in error_msg:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization aborted - Zero GPU not ready")
else:
logging.error(f"{EMOJI_MAP['ERROR']} GPU initialization error: {error_msg}")
raise
# ----------------------------------------------------------------------
# HELPER FUNCTIONS
# ----------------------------------------------------------------------
def parse_retry_time_from_error(error_message: str) -> Optional[int]:
"""Parse retry time from GPU quota error messages"""
patterns = [
r"retry in (\d+):(\d+):(\d+)", # "retry in 0:06:53"
r"Please retry in (\d+):(\d+):(\d+)", # "Please retry in 0:06:53"
r"retry after (\d+)s", # "retry after 900s"
r"retry_after: (\d+)s", # "retry_after: 900s"
]
for pattern in patterns:
match = re.search(pattern, error_message)
if match:
if len(match.groups()) == 3:
# Format: H:MM:SS
hours, minutes, seconds = map(int, match.groups())
return hours * 3600 + minutes * 60 + seconds
else:
# Format: seconds
return int(match.group(1))
# If no specific time found, return default based on error type
if "quota" in error_message.lower() or "limit" in error_message.lower():
return 900 # Default 15 minutes for quota errors
return None
def calculate_quota_recovery(tracker: Dict, current_time: float) -> Dict:
"""Calculate current quota recovery status based on HF ZeroGPU mechanics"""
recovery_info = tracker.get("quota_recovery", {})
# PRO users get 1500s, free users get 300s, not logged in get 180s
# We'll assume 300s as default (logged in free user)
base_quota = recovery_info.get("base_quota", 300)
refill_rate = 30 # 1 GPU second per 30 real seconds (confirmed)
half_life = 7200 # 2 hours in seconds (confirmed)
max_quota = 600 # Maximum quota cap (confirmed)
# Get recent requests (last 8 hours to account for multiple half-lives)
cutoff_time = current_time - (half_life * 4) # 8 hours
recent_requests = [r for r in tracker.get("requests", []) if r["timestamp"] > cutoff_time]
# Calculate effective usage with half-life decay
effective_usage = 0
for req in recent_requests:
if req.get("success", False):
age = current_time - req["timestamp"]
# Apply half-life decay: usage_weight = 2^(-age/half_life)
# This means usage halves every 2 hours
decay_factor = 2 ** (-age / half_life)
effective_usage += req.get("duration", 0) * decay_factor
# Find the oldest request to calculate recovery
oldest_request_time = min([r["timestamp"] for r in recent_requests], default=current_time)
time_since_oldest = current_time - oldest_request_time
# Calculate recovered quota (1 GPU second per 30 real seconds)
recovered_quota = time_since_oldest / refill_rate
# Calculate available quota considering all factors
# Available = base_quota - decayed_usage + recovered_quota
available_from_decay = base_quota - effective_usage
available_with_recovery = available_from_decay + recovered_quota
# Apply maximum cap
estimated_available = min(max(0, available_with_recovery), max_quota)
# Calculate time to recover specific amounts
deficit = max(0, effective_usage - recovered_quota)
time_to_60s = max(0, (60 - estimated_available) * refill_rate) if estimated_available < 60 else 0
time_to_full = max(0, deficit * refill_rate)
return {
"estimated_available_quota": estimated_available,
"effective_usage": effective_usage,
"recovered_quota": recovered_quota,
"time_to_60s_quota": time_to_60s,
"time_to_full_recovery": time_to_full,
"refill_rate_info": "1 GPU second per 30 real seconds",
"half_life_hours": half_life / 3600,
"max_quota_cap": max_quota,
"recent_requests_count": len(recent_requests),
"quota_formula": "min(base_quota - decayed_usage + recovered_quota, 600)"
}
def calculate_retry_after_from_quota(error_message: str) -> int:
"""Calculate appropriate retry-after time based on quota information"""
# Try to extract requested vs available GPU seconds
pattern = r"(\d+)s left vs\. (\d+)s requested"
match = re.search(pattern, error_message)
if match:
left = int(match.group(1))
requested = int(match.group(2))
deficit = requested - left
# ZeroGPU refills at 1 GPU second per 30 real seconds
# Add some buffer time
retry_seconds = (deficit * 30) + 60 # Add 1 minute buffer
# Cap at reasonable limits
return min(retry_seconds, 3600) # Max 1 hour
# Default to parsed time or 15 minutes
parsed_time = parse_retry_time_from_error(error_message)
return parsed_time if parsed_time else 900
def estimate_quota_needed(num_images: int, product_type: str = "General") -> float:
# Smart estimation based on actual log analysis: 5.21s average
base_time_per_image = 6.0 # Slight buffer over 5.21s actual average
# Realistic complexity multipliers
complexity_multipliers = {
"General": 1.0,
"Shirt": 1.1,
"Dress": 1.2,
"Jacket": 1.3,
"Shoes": 1.1,
"Accessories": 0.9
}
multiplier = complexity_multipliers.get(product_type, 1.0)
estimated_time = num_images * base_time_per_image * multiplier
# Smart safety buffer: smaller for small batches, larger for big batches
if num_images <= 3:
safety_factor = 1.1 # 10% buffer for small batches
elif num_images <= 10:
safety_factor = 1.2 # 20% buffer for medium batches
else:
safety_factor = 1.3 # 30% buffer for large batches
return estimated_time * safety_factor
def calculate_processing_quota_limit(available_quota: float, safety_margin: float = 0.9) -> Dict:
"""Calculate how many images can be processed with current quota"""
# Reserve 10% of quota as safety margin
usable_quota = available_quota * safety_margin
# Average processing time per image (conservative estimate)
avg_time_per_image = 18 # seconds (includes model loading, processing, etc.)
max_images = int(usable_quota / avg_time_per_image)
return {
"available_quota": available_quota,
"usable_quota": usable_quota,
"safety_margin": safety_margin,
"avg_time_per_image": avg_time_per_image,
"max_processable_images": max_images,
"estimated_usage": max_images * avg_time_per_image,
"quota_after_processing": available_quota - (max_images * avg_time_per_image)
}
def should_trigger_quota_recovery(available_quota: float, requested_images: int, product_type: str = "General") -> Dict:
"""Determine if processing should be stopped to trigger quota recovery"""
estimated_needed = estimate_quota_needed(requested_images, product_type)
# Conservative threshold - if we need more than 90% of available quota, trigger recovery
quota_threshold = available_quota * 0.9
should_wait = estimated_needed > quota_threshold
if should_wait:
# Calculate 2.5 hour wait time for full recovery
full_recovery_wait = 9000 # 2.5 hours in seconds
return {
"should_wait": True,
"reason": "quota_conservation",
"available_quota": available_quota,
"estimated_needed": estimated_needed,
"quota_threshold": quota_threshold,
"recovery_wait_seconds": full_recovery_wait,
"recovery_wait_hours": full_recovery_wait / 3600,
"requested_images": requested_images,
"message": f"Processing {requested_images} images needs {estimated_needed}s but only {available_quota:.0f}s available. Triggering 2.5h recovery wait."
}
return {
"should_wait": False,
"available_quota": available_quota,
"estimated_needed": estimated_needed,
"quota_threshold": quota_threshold,
"requested_images": requested_images,
"safe_to_process": True
}
def validate_image_count_for_quota(available_quota: float, image_count: int, product_type: str = "General") -> Dict:
estimated_needed = estimate_quota_needed(image_count, product_type)
# Smart thresholds based on batch size and available quota
if available_quota < 30:
# Very low quota - be conservative
safety_buffer = 15
max_usage_percent = 0.6
elif available_quota < 100:
# Medium quota - moderate safety
safety_buffer = 20
max_usage_percent = 0.75
else:
# High quota - allow more efficient usage
safety_buffer = 30
max_usage_percent = 0.85
usable_quota = max(0, available_quota - safety_buffer)
max_safe_images = int(usable_quota / 8) # Realistic: 8s per image with buffer
# Smart validation: reject only if really necessary
if (estimated_needed > usable_quota or
estimated_needed > (available_quota * max_usage_percent) or
available_quota < 25): # Minimum 25s to do anything useful
return {
"valid": False,
"reason": "quota_insufficient",
"image_count": image_count,
"available_quota": available_quota,
"estimated_needed": estimated_needed,
"safety_buffer": safety_buffer,
"max_usage_percent": int(max_usage_percent * 100),
"max_safe_images": max_safe_images,
"recommended_action": "wait_for_quota_recovery",
"message": f"Smart quota protection: {image_count} images need {estimated_needed:.1f}s but only {available_quota:.1f}s available. Max safe: {max_safe_images} images."
}
return {
"valid": True,
"image_count": image_count,
"available_quota": available_quota,
"estimated_needed": estimated_needed,
"quota_after_processing": available_quota - estimated_needed,
"efficiency": f"{(estimated_needed/available_quota)*100:.1f}%",
"safe_to_process": True
}
def check_rate_limiting(client_ip: str, request_id: str = None) -> Dict:
"""Check if request should be rate limited"""
current_time = time.time()
if not hasattr(app, "state") or not hasattr(app.state, "quota_tracker"):
return {"allowed": True, "reason": "no_tracking"}
rate_limits = app.state.quota_tracker.get("rate_limiting", {})
# Check per-IP quota recovery
requests_by_ip = rate_limits.get("requests_by_ip", {})
if client_ip in requests_by_ip:
ip_data = requests_by_ip[client_ip]
# Apply HF ZeroGPU quota calculation with half-life decay
# Get all GPU usage history for this IP
usage_history = ip_data.get("usage_history", [])
# Calculate effective usage with half-life decay (2 hour half-life)
effective_used = 0
half_life = 7200 # 2 hours
for usage in usage_history:
age = current_time - usage["timestamp"]
if age < 28800: # Only consider last 8 hours (4 half-lives)
decay_factor = 2 ** (-age / half_life)
effective_used += usage["gpu_seconds"] * decay_factor
# Calculate recovery based on time since last usage
last_gpu_usage = ip_data.get("last_gpu_usage", current_time)
time_since_last = current_time - last_gpu_usage
recovered = time_since_last / 30 # 1 GPU second per 30 real seconds
# Apply quota formula: available = min(base - decayed_usage + recovered, 600)
base_quota = 300 # Standard logged-in user quota
max_quota = 600 # Maximum cap
available_quota = min(max(0, base_quota - effective_used + recovered), max_quota)
# Update IP data with calculated values
ip_data["effective_gpu_seconds_used"] = effective_used
ip_data["available_quota"] = available_quota
# Log the calculation for debugging
logging.info(f"{EMOJI_MAP['INFO']} Quota calculation for IP {client_ip}: effective_used={effective_used:.1f}, recovered={recovered:.1f}, available={available_quota:.1f}")
# Check if this IP is in quota recovery
quota_recovery_until = ip_data.get("quota_recovery_until", 0)
if current_time < quota_recovery_until:
# Check if we have enough available quota now
if available_quota >= 60: # Enough for a typical request
ip_data["quota_recovery_until"] = 0
logging.info(f"{EMOJI_MAP['SUCCESS']} Quota recovery completed for IP {client_ip}. Available: {available_quota:.1f} GPU seconds")
else:
time_remaining = int(quota_recovery_until - current_time)
return {
"allowed": False,
"reason": "quota_cooldown",
"wait_time_seconds": time_remaining,
"message": f"GPU quota exhausted. Available: {available_quota:.0f}s, Need: 60s. Recovery in {time_remaining}s ({time_remaining//60} minutes).",
"quota_exceeded": True,
"available_quota": available_quota,
"cooldown_until": datetime.fromtimestamp(quota_recovery_until).isoformat()
}
elif quota_recovery_until > 0 and current_time >= quota_recovery_until:
# Recovery period has passed - check if we actually have quota now
if available_quota < 60:
# Still not enough quota - infrastructure might be exhausted
consecutive_errors = ip_data.get("consecutive_quota_errors", 0)
if consecutive_errors >= 2:
# Multiple failures - suggest longer wait
new_recovery_time = 5400 # 90 minutes
ip_data["quota_recovery_until"] = current_time + new_recovery_time
logging.warning(f"{EMOJI_MAP['WARNING']} Infrastructure quota appears exhausted for IP {client_ip}. Extended recovery: {new_recovery_time//60} minutes")
return {
"allowed": False,
"reason": "infrastructure_exhausted",
"wait_time_seconds": new_recovery_time,
"message": f"Infrastructure quota exhausted. Extended recovery needed: {new_recovery_time//60} minutes.",
"quota_exceeded": True,
"infrastructure_issue": True
}
else:
# Clear the recovery flag
ip_data["quota_recovery_until"] = 0
logging.info(f"{EMOJI_MAP['INFO']} Quota recovery period ended for IP {client_ip}. Available: {available_quota:.1f} GPU seconds")
# Check minimum interval between requests
last_request_time = ip_data.get("last_request", 0)
min_interval = rate_limits.get("min_request_interval", 30)
if current_time - last_request_time < min_interval:
wait_time = int(min_interval - (current_time - last_request_time))
return {
"allowed": False,
"reason": "rate_limited",
"wait_time_seconds": wait_time,
"message": f"Rate limited. Please wait {wait_time} seconds between requests."
}
# Return quota information
return {"allowed": True, "available_quota": available_quota}
# Check for duplicate requests (same IP + same request within 5 seconds)
if request_id and client_ip in requests_by_ip:
recent_requests = requests_by_ip.get(client_ip, {}).get("recent_request_ids", [])
# Clean old request IDs (older than 10 seconds)
recent_requests = [(rid, t) for rid, t in recent_requests if current_time - t < 10]
# Check for duplicate
for rid, req_time in recent_requests:
if rid == request_id and current_time - req_time < 5:
return {
"allowed": False,
"reason": "duplicate_request",
"wait_time_seconds": 5,
"message": "Duplicate request detected. Please wait before retrying."
}
return {"allowed": True, "available_quota": 300} # Default quota if no tracking
def update_rate_limiting(client_ip: str, request_id: str = None, quota_error: bool = False, gpu_seconds_used: float = None, retry_after_override: int = None):
"""Update rate limiting state with per-IP quota tracking"""
current_time = time.time()
if not hasattr(app, "state") or not hasattr(app.state, "quota_tracker"):
return
rate_limits = app.state.quota_tracker.get("rate_limiting", {})
requests_by_ip = rate_limits.get("requests_by_ip", {})
# Initialize IP data if not exists
if client_ip not in requests_by_ip:
requests_by_ip[client_ip] = {
"first_request": current_time,
"last_request": current_time,
"request_count": 1,
"recent_request_ids": [],
"usage_history": [], # Track individual usage events with timestamps
"last_gpu_usage": current_time,
"consecutive_quota_errors": 0
}
else:
requests_by_ip[client_ip]["last_request"] = current_time
requests_by_ip[client_ip]["request_count"] += 1
# Update GPU usage tracking with history
if gpu_seconds_used:
# Add to usage history for half-life calculations
usage_history = requests_by_ip[client_ip].get("usage_history", [])
usage_history.append({
"timestamp": current_time,
"gpu_seconds": gpu_seconds_used
})
# Keep only last 8 hours of history (4 half-lives)
cutoff_time = current_time - 28800
usage_history = [u for u in usage_history if u["timestamp"] > cutoff_time]
requests_by_ip[client_ip]["usage_history"] = usage_history
requests_by_ip[client_ip]["last_gpu_usage"] = current_time
# Handle quota error - calculate proper recovery time
if quota_error:
# Calculate effective GPU usage with half-life decay
usage_history = requests_by_ip[client_ip].get("usage_history", [])
effective_used = 0
half_life = 7200 # 2 hours
for usage in usage_history:
age = current_time - usage["timestamp"]
if age < 28800: # Last 8 hours
decay_factor = 2 ** (-age / half_life)
effective_used += usage["gpu_seconds"] * decay_factor
# Calculate how much quota we have available
last_gpu_usage = requests_by_ip[client_ip].get("last_gpu_usage", current_time)
time_since_last = current_time - last_gpu_usage
recovered = time_since_last / 30
base_quota = 300 # Standard user quota
max_quota = 600 # Maximum cap
available = min(max(0, base_quota - effective_used + recovered), max_quota)
# Calculate recovery time needed
target_quota = 60 # Need at least 60 seconds for a batch
if retry_after_override:
recovery_time = retry_after_override
elif available < target_quota:
# Calculate time to recover to target quota
deficit = target_quota - available
recovery_time = int(deficit * 30) # 30 real seconds per GPU second
recovery_time = max(recovery_time, 1800) # Minimum 30 minutes
else:
recovery_time = 1800 # Default 30 minutes
quota_recovery_until = current_time + recovery_time
requests_by_ip[client_ip]["quota_recovery_until"] = quota_recovery_until
logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota exceeded for IP {client_ip}. Recovery time: {recovery_time}s ({recovery_time//60} minutes)")
logging.info(f"Effective usage: {effective_used:.1f}s, Available: {available:.1f}s, Target: {target_quota}s")
logging.info(f"Recovery until: {datetime.fromtimestamp(quota_recovery_until).isoformat()}")
# Add request ID if provided
if request_id:
recent_ids = requests_by_ip[client_ip].get("recent_request_ids", [])
recent_ids.append((request_id, current_time))
# Keep only last 10 request IDs
requests_by_ip[client_ip]["recent_request_ids"] = recent_ids[-10:]
# Clean up old IP data (older than 2 hours)
cutoff_time = current_time - 7200
requests_by_ip = {
ip: data for ip, data in requests_by_ip.items()
if data["last_request"] > cutoff_time
}
# Update state
rate_limits["requests_by_ip"] = requests_by_ip
app.state.quota_tracker["rate_limiting"] = rate_limits
def get_client_ip(request: Request) -> str:
"""Extract client IP from request"""
# Check for forwarded headers first
forwarded_for = request.headers.get("x-forwarded-for")
if forwarded_for:
# Take the first IP in the chain
return forwarded_for.split(",")[0].strip()
# Check other common headers
real_ip = request.headers.get("x-real-ip")
if real_ip:
return real_ip
# Fallback to client host
return request.client.host if request.client else "unknown"
def generate_request_id(urls: Union[str, List[str]], product_type: str) -> str:
"""Generate a unique request ID for deduplication"""
import hashlib
if isinstance(urls, str):
url_list = [url.strip() for url in urls.split(",") if url.strip()]
else:
url_list = urls
# Create hash from sorted URLs and product type
content = "|".join(sorted(url_list)) + "|" + product_type
return hashlib.md5(content.encode()).hexdigest()[:12]
def check_quota_availability(urls: Union[str, List[str]], product_type: str) -> Dict:
"""Check if current quota is sufficient for the request"""
if isinstance(urls, str):
url_list = [url.strip() for url in urls.split(",") if url.strip()]
else:
url_list = urls
num_images = len(url_list)
estimated_needed = estimate_quota_needed(num_images, product_type)
current_time = time.time()
result = {
"num_images": num_images,
"estimated_gpu_seconds_needed": estimated_needed,
"quota_sufficient": True,
"recommended_action": "proceed",
"wait_time_seconds": 0
}
# Check if we have quota tracking available
if hasattr(app, "state") and hasattr(app.state, "quota_tracker"):
recovery_info = calculate_quota_recovery(app.state.quota_tracker, current_time)
available = recovery_info["estimated_available_quota"]
result.update({
"estimated_available_quota": available,
"quota_recovery_info": recovery_info
})
if estimated_needed > available:
result.update({
"quota_sufficient": False,
"recommended_action": "wait",
"wait_time_seconds": int((estimated_needed - available) * 30), # 30 seconds per GPU second
"shortage_gpu_seconds": estimated_needed - available
})
return result
def _process_images_impl(urls: Union[str, List[str]], product_type: str) -> Dict:
start_time = time.time()
if isinstance(urls, str):
url_list = [url.strip() for url in urls.split(",") if url.strip()]
else:
url_list = urls
if not url_list:
raise HTTPException(status_code=HTTP_BAD_REQUEST, detail=ERROR_NO_VALID_URLS)
# Import build_keywords function to generate keywords based on product type
from src.processing.bounding_box.bounding_box import build_keywords
# Generate keywords for this product type
keywords = build_keywords(product_type)
contexts = [ProcessingContext(url=url, product_type=product_type, keywords=keywords) for url in url_list]
batch_logs = []
try:
ensure_models_loaded()
run_functions_in_sequence(contexts, PIPELINE_STEPS)
processed_images = []
for ctx in contexts:
if hasattr(ctx, 'error') and ctx.error:
processed_images.append({
"url": ctx.url,
"status": STATUS_ERROR,
"error": str(ctx.error)
})
elif hasattr(ctx, 'skip_processing') and ctx.skip_processing:
# Check if there's a specific error message
error_msg = "Processing skipped"
if hasattr(ctx, 'processing_error'):
error_msg = str(ctx.processing_error)
processed_images.append({
"url": ctx.url,
"status": STATUS_ERROR,
"error": error_msg
})
elif hasattr(ctx, 'result_image') and ctx.result_image:
processed_images.append({
"url": ctx.url,
"status": STATUS_PROCESSED,
"base64_image": ctx.result_image,
"metadata": ctx.metadata,
"processing_logs": ctx.processing_logs
})
else:
processed_images.append({
"url": ctx.url,
"status": STATUS_NOT_PROCESSED
})
total_time = time.time() - start_time
return {
"status": "success",
"processed_images": processed_images,
"total_time": total_time,
"batch_logs": batch_logs,
"system_info": get_system_info()
}
except Exception as e:
logging.error(f"{EMOJI_MAP['ERROR']} Processing failed: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@spaces.GPU(duration=GPU_DURATION_LONG)
def process_images_gpu(urls: Union[str, List[str]], product_type: str) -> Dict:
"""GPU-accelerated image processing for Spaces"""
gpu_start_time = time.time()
try:
# Force model loading in GPU context for Zero GPU environment
if not MODELS_LOADED:
logging.info(f"{EMOJI_MAP['INFO']} Loading models in GPU context...")
from src.models.model_loader import load_models
try:
load_models()
logging.info(f"{EMOJI_MAP['SUCCESS']} Models loaded in GPU context")
except Exception as e:
logging.error(f"{EMOJI_MAP['ERROR']} Failed to load models in GPU context: {str(e)}")
# Continue anyway - some steps might work without all models
# Move models to GPU within the GPU context
logging.info(f"{EMOJI_MAP['INFO']} Moving models to GPU...")
from src.models.model_loader import move_models_to_gpu
try:
move_models_to_gpu()
logging.info(f"{EMOJI_MAP['SUCCESS']} Models moved to GPU")
except Exception as e:
logging.warning(f"{EMOJI_MAP['WARNING']} Failed to move some models to GPU: {str(e)}")
# Continue anyway - will run on CPU but slower
result = _process_images_impl(urls, product_type)
# Track successful GPU usage
gpu_duration = time.time() - gpu_start_time
if hasattr(app, "state") and hasattr(app.state, "quota_tracker"):
app.state.quota_tracker["total_gpu_seconds_used"] += gpu_duration
app.state.quota_tracker["requests"].append({
"timestamp": gpu_start_time,
"duration": gpu_duration,
"success": True
})
# Keep only last 100 requests
app.state.quota_tracker["requests"] = app.state.quota_tracker["requests"][-100:]
# Calculate current quota status
recovery_info = calculate_quota_recovery(app.state.quota_tracker, time.time())
available_quota = recovery_info.get("estimated_available_quota", 0)
logging.info(f"{EMOJI_MAP['INFO']} GPU processing completed in {gpu_duration:.2f}s")
logging.info(f"{EMOJI_MAP['INFO']} Estimated remaining quota: {available_quota:.1f}s (after using {gpu_duration:.1f}s)")
# Store GPU usage in result for rate limiting update
result["_gpu_seconds_used"] = gpu_duration
return result
except Exception as e:
error_msg = str(e)
# Track failed GPU usage
gpu_duration = time.time() - gpu_start_time
if hasattr(app, "state") and hasattr(app.state, "quota_tracker"):
app.state.quota_tracker["requests"].append({
"timestamp": gpu_start_time,
"duration": gpu_duration,
"success": False,
"error": error_msg[:100] # Store first 100 chars of error
})
# Keep only last 100 requests
app.state.quota_tracker["requests"] = app.state.quota_tracker["requests"][-100:]
if "GPU task aborted" in error_msg:
logging.error(f"{EMOJI_MAP['ERROR']} GPU task was aborted - Zero GPU might be overloaded or warming up")
logging.info(f"{EMOJI_MAP['INFO']} This often happens during startup - the GPU will be ready soon")
raise HTTPException(
status_code=503,
detail="GPU resources temporarily unavailable. Zero GPU is warming up. Please try again in 30-60 seconds."
)
else:
raise
def process_images_with_rate_limiting(urls: Union[str, List[str]], product_type: str, client_ip: str, request_id: str = None) -> Dict:
"""Process images with rate limiting and quota management"""
# Convert URLs to list for counting
if isinstance(urls, str):
url_list = [url.strip() for url in urls.split(",") if url.strip()]
else:
url_list = urls
num_images = len(url_list)
# Check rate limiting first
rate_check = check_rate_limiting(client_ip, request_id)
if not rate_check.get("allowed", True):
wait_time = rate_check.get("wait_time_seconds", 30)
message = rate_check.get("message", "Rate limited")
# Format response for client compatibility
error_detail = {
"error": message,
"retry_after": wait_time,
"quota_exceeded": rate_check.get("quota_exceeded", False),
"cooldown_until": rate_check.get("cooldown_until", "")
}
# Use JSON string format that client expects
raise HTTPException(
status_code=429,
detail={
"error": json.dumps(error_detail) # Client expects nested JSON
},
headers={"Retry-After": str(wait_time)}
)
# Get current available quota for this IP
available_quota = rate_check.get("available_quota", 300)
# First validate image count against available quota
validation = validate_image_count_for_quota(available_quota, num_images, product_type)
if not validation.get("valid", True):
# Image count validation failed - trigger immediate quota recovery
recovery_wait = 9000 # 2.5 hours
logging.warning(f"{EMOJI_MAP['WARNING']} Image count validation failed for IP {client_ip}: {validation['message']}")
# Update rate limiting to enter long recovery mode
update_rate_limiting(client_ip, request_id, quota_error=True, retry_after_override=recovery_wait)
# Format image count validation response
error_detail = {
"error": "Image count exceeds quota threshold - 2.5 hour recovery wait initiated",
"retry_after": recovery_wait,
"quota_conservation": True,
"image_count_exceeded": True,
"image_count": validation["image_count"],
"available_quota": validation["available_quota"],
"estimated_needed": validation["estimated_needed"],
"threshold_percent": validation["threshold_percent"],
"max_safe_images": validation["max_safe_images"],
"recovery_hours": recovery_wait / 3600,
"message": validation["message"]
}
raise HTTPException(
status_code=429,
detail={
"error": json.dumps(error_detail)
},
headers={"Retry-After": str(recovery_wait)}
)
# Check if we should trigger quota recovery (secondary check)
quota_decision = should_trigger_quota_recovery(available_quota, num_images, product_type)
if quota_decision.get("should_wait", False):
# Trigger 2.5-hour quota recovery wait
recovery_wait = quota_decision["recovery_wait_seconds"]
logging.warning(f"{EMOJI_MAP['WARNING']} Triggering quota recovery for IP {client_ip}: {quota_decision['message']}")
# Update rate limiting to enter long recovery mode
update_rate_limiting(client_ip, request_id, quota_error=True, retry_after_override=recovery_wait)
# Format quota conservation response
error_detail = {
"error": "Quota conservation triggered - 2.5 hour recovery wait initiated",
"retry_after": recovery_wait,
"quota_conservation": True,
"available_quota": available_quota,
"estimated_needed": quota_decision["estimated_needed"],
"quota_threshold": quota_decision["quota_threshold"],
"recovery_hours": quota_decision["recovery_wait_hours"],
"message": quota_decision["message"]
}
raise HTTPException(
status_code=429,
detail={
"error": json.dumps(error_detail)
},
headers={"Retry-After": str(recovery_wait)}
)
# Update rate limiting tracking
update_rate_limiting(client_ip, request_id)
if os.getenv("SPACE_ID"):
try:
result = process_images_gpu(urls, product_type)
# Update rate limiting with GPU usage
gpu_seconds = result.pop("_gpu_seconds_used", 0)
if gpu_seconds > 0:
update_rate_limiting(client_ip, request_id, gpu_seconds_used=gpu_seconds)
# Reset consecutive quota errors on successful processing
if hasattr(app.state, "quota_tracker"):
rate_limits = app.state.quota_tracker.get("rate_limiting", {})
requests_by_ip = rate_limits.get("requests_by_ip", {})
if client_ip in requests_by_ip:
requests_by_ip[client_ip]["consecutive_quota_errors"] = 0
logging.info(f"{EMOJI_MAP['SUCCESS']} Successful GPU processing - quota error counter reset for IP {client_ip}")
return result
except Exception as e:
error_msg = str(e)
error_type = type(e).__name__
# Handle Gradio quota errors that occur before function execution
if isinstance(e, gradio.exceptions.Error) or "gradio.exceptions.Error" in str(type(e)) or error_type == "Error":
if "GPU limit" in error_msg or "quota exceeded" in error_msg or "ZeroGPU quota exceeded" in error_msg:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota exceeded: {error_msg}")
# Infrastructure-level quota exhaustion detection
retry_after = 1800 # Default 30 minutes
if hasattr(app.state, "quota_tracker"):
rate_limits = app.state.quota_tracker.get("rate_limiting", {})
# Track global quota exhaustion
current_time = time.time()
last_global_error = rate_limits.get("global_quota_exhausted_at", 0)
time_since_last_global_error = current_time - last_global_error
# If last global error was recent (within 5 minutes), increment global counter
if time_since_last_global_error < 300:
rate_limits["global_consecutive_errors"] += 1
else:
rate_limits["global_consecutive_errors"] = 1
rate_limits["global_quota_exhausted_at"] = current_time
# Mark infrastructure as exhausted
rate_limits["infrastructure_quota_state"] = "exhausted"
rate_limits["infrastructure_quota_reset_time"] = current_time + 5400 # 90 minutes
# Get IP data
requests_by_ip = rate_limits.get("requests_by_ip", {})
if client_ip in requests_by_ip:
ip_data = requests_by_ip[client_ip]
# Count consecutive quota errors
consecutive_errors = ip_data.get("consecutive_quota_errors", 0) + 1
ip_data["consecutive_quota_errors"] = consecutive_errors
# Progressive backoff based on consecutive errors
if consecutive_errors == 1:
retry_after = 1800 # 30 minutes
logging.info(f"{EMOJI_MAP['INFO']} First quota error - standard recovery time")
elif consecutive_errors == 2:
retry_after = 3600 # 60 minutes
logging.warning(f"{EMOJI_MAP['WARNING']} Second consecutive quota error - extended recovery time")
elif consecutive_errors == 3:
retry_after = 5400 # 90 minutes
logging.error(f"{EMOJI_MAP['ERROR']} Third consecutive quota error - maximum recovery time")
else:
# After 3+ consecutive errors, suggest full recovery wait
retry_after = 9000 # 2.5 hours for full recovery
logging.error(f"{EMOJI_MAP['ERROR']} Multiple consecutive quota errors ({consecutive_errors}) - suggesting full recovery wait")
logging.info(f"{EMOJI_MAP['INFO']} Infrastructure quota appears exhausted. Recommend waiting 2.5 hours for full recovery.")
else:
# First time for this IP
requests_by_ip[client_ip] = {"consecutive_quota_errors": 1}
# Update rate limiting to enter cooldown mode with calculated retry_after
update_rate_limiting(client_ip, request_id, quota_error=True, retry_after_override=retry_after)
# Store quota error info
if hasattr(app, "state"):
if not hasattr(app.state, "last_quota_error"):
app.state.last_quota_error = {}
app.state.last_quota_error = {
"timestamp": time.time(),
"retry_after": retry_after,
"error_message": error_msg
}
# Format response for client compatibility
cooldown_until = datetime.fromtimestamp(time.time() + retry_after).isoformat()
error_detail = {
"error": f"GPU quota exceeded. Recovery needed: {retry_after // 60} minutes",
"retry_after": retry_after,
"quota_exceeded": True,
"cooldown_until": cooldown_until
}
# Raise HTTPException with nested JSON format client expects
raise HTTPException(
status_code=429,
detail={
"error": json.dumps(error_detail) # Client expects nested JSON
},
headers={"Retry-After": str(retry_after)}
)
# Re-raise other exceptions
raise
else:
return _process_images_impl(urls, product_type)
def process_images(urls: Union[str, List[str]], product_type: str) -> Dict:
"""Backward compatibility wrapper - should not be used directly"""
# This is kept for backward compatibility but should not be used
# All endpoints should use process_images_with_rate_limiting instead
return _process_images_impl(urls, product_type)
# ----------------------------------------------------------------------
# ENDPOINTS
# ----------------------------------------------------------------------
@app.get("/", response_class=HTMLResponse)
async def root():
return f"""
<html>
<head>
<title>{API_TITLE}</title>
</head>
<body>
<h1>{API_TITLE} v{API_VERSION}</h1>
<p>Visit <a href="/api/docs">/api/docs</a> for API documentation</p>
</body>
</html>
"""
@app.get("/health", response_model=HealthResponse)
async def health():
# Check GPU availability
gpu_available = False
gpu_name = None
try:
if torch.cuda.is_available():
gpu_available = True
gpu_name = torch.cuda.get_device_name(0)
except:
pass
system_info = get_system_info()
system_info["gpu_available"] = gpu_available
system_info["gpu_name"] = gpu_name
system_info["space_id"] = os.getenv("SPACE_ID", None)
system_info["zero_gpu"] = bool(os.getenv("SPACE_ID"))
return HealthResponse(
status="healthy",
timestamp=time.time(),
device=DEVICE,
models_loaded=MODELS_LOADED,
gpu_available=gpu_available,
system_info=system_info
)
@app.post("/api/wake")
async def wake_up():
"""Lightweight endpoint for waking up the space"""
logging.info(f"{EMOJI_MAP['INFO']} Wake-up request received")
# Try to initialize GPU if in Zero GPU environment
if os.getenv("SPACE_ID"):
try:
# This will trigger GPU allocation in Zero GPU spaces
init_gpu()
logging.info(f"{EMOJI_MAP['SUCCESS']} GPU initialized for wake-up")
except Exception as e:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization during wake-up: {str(e)}")
# Ensure models are loaded
try:
ensure_models_loaded()
logging.info(f"{EMOJI_MAP['SUCCESS']} Models loaded during wake-up")
except Exception as e:
logging.warning(f"{EMOJI_MAP['WARNING']} Model loading during wake-up: {str(e)}")
return {
"status": "awake",
"timestamp": time.time(),
"device": DEVICE,
"models_loaded": MODELS_LOADED,
"message": "Service is awake and ready"
}
@app.get("/api/quota-info")
async def quota_info():
"""Provide information about GPU quota and current recovery status"""
current_time = time.time()
# Base quota information
quota_status = {
"status": "info",
"quota_management": "Hugging Face ZeroGPU Infrastructure",
"quota_details": {
"total_seconds": 300,
"refill_rate": "1 GPU second per 30 real seconds",
"half_life": "2 hours",
"full_recovery_time": "2.5 hours (9000 seconds)"
},
"recovery_suggestions": {
"light_usage": {
"gpu_seconds": 30,
"wait_minutes": 15,
"suitable_for": "1-2 images"
},
"moderate_usage": {
"gpu_seconds": 60,
"wait_minutes": 30,
"suitable_for": "2-4 images"
},
"heavy_usage": {
"gpu_seconds": 120,
"wait_minutes": 60,
"suitable_for": "4-8 images"
},
"full_quota": {
"gpu_seconds": 300,
"wait_minutes": 150,
"suitable_for": "10+ images"
}
},
"user_type_quotas": {
"anonymous": {
"quota_seconds": 180,
"description": "Not logged in"
},
"authenticated": {
"quota_seconds": 300,
"description": "Logged in users"
},
"pro": {
"quota_seconds": 1500,
"description": "PRO subscribers (5x quota)"
}
},
"timestamp": current_time
}
# Add current quota recovery calculation if available
if hasattr(app.state, "quota_tracker"):
recovery_info = calculate_quota_recovery(app.state.quota_tracker, current_time)
quota_status["current_quota_estimate"] = recovery_info
# Update last recovery check time
app.state.quota_tracker["quota_recovery"]["last_recovery_check"] = current_time
# Add information about last known quota error if available
if hasattr(app.state, "last_quota_error"):
last_error = app.state.last_quota_error
time_since_error = current_time - last_error.get("timestamp", 0)
quota_status["last_quota_error"] = {
"time_ago_seconds": int(time_since_error),
"retry_after": last_error.get("retry_after", 900),
"estimated_recovery": max(0, last_error.get("retry_after", 900) - time_since_error)
}
# Add usage tracking information if available
if hasattr(app.state, "quota_tracker"):
tracker = app.state.quota_tracker
recent_requests = tracker.get("requests", [])
# Calculate stats from recent requests
if recent_requests:
last_hour_requests = [r for r in recent_requests if current_time - r["timestamp"] < 3600]
successful_requests = [r for r in last_hour_requests if r.get("success", False)]
failed_requests = [r for r in last_hour_requests if not r.get("success", False)]
quota_status["usage_stats"] = {
"last_hour": {
"total_requests": len(last_hour_requests),
"successful": len(successful_requests),
"failed": len(failed_requests),
"total_gpu_seconds": sum(r.get("duration", 0) for r in successful_requests),
"average_duration": sum(r.get("duration", 0) for r in successful_requests) / len(successful_requests) if successful_requests else 0
},
"total_gpu_seconds_used": tracker.get("total_gpu_seconds_used", 0)
}
# Add last few errors for debugging
recent_errors = [r for r in failed_requests if "quota" in r.get("error", "").lower()][-3:]
if recent_errors:
quota_status["recent_quota_errors"] = recent_errors
return quota_status
@app.post("/api/quota-check")
async def quota_check(request: ImageRequest):
"""Check if current quota is sufficient for the request"""
try:
availability = check_quota_availability(request.urls, request.product_type)
return {
"status": "success",
"quota_check": availability,
"timestamp": time.time()
}
except Exception as e:
return JSONResponse(
status_code=400,
content={
"status": "error",
"error": str(e),
"timestamp": time.time()
}
)
@app.post("/api/predict", response_model=ProcessingResponse)
async def predict(request: ImageRequest, http_request: Request):
# Log X-IP-Token if present (for quota tracking)
x_ip_token = http_request.headers.get("x-ip-token")
if x_ip_token:
logging.info(f"{EMOJI_MAP['INFO']} Request received with X-IP-Token for quota tracking")
# Get client IP and generate request ID
client_ip = get_client_ip(http_request)
request_id = generate_request_id(request.urls, request.product_type)
# Log rate limiting info
logging.info(f"{EMOJI_MAP['INFO']} Processing request from {client_ip}, request_id: {request_id}")
result = process_images_with_rate_limiting(request.urls, request.product_type, client_ip, request_id)
return ProcessingResponse(
status=result["status"],
results=[
ProcessedImage(
image_url=img["url"],
status=img["status"],
base64=img.get("base64_image", ""),
format="png",
type="processed",
metadata=img.get("metadata", {}),
error=img.get("error")
)
for img in result["processed_images"]
],
processed_count=len([img for img in result["processed_images"] if img["status"] == STATUS_PROCESSED]),
total_time=result["total_time"],
system_info=result["system_info"]
)
@app.post("/api/rb_and_crop")
async def shopify_webhook(webhook: ShopifyWebhook, request: Request):
# Get client IP first for quota checking
client_ip = get_client_ip(request)
if not webhook.data or len(webhook.data) < 2:
raise HTTPException(status_code=HTTP_BAD_REQUEST, detail="Invalid webhook data")
images_info = webhook.data[0]
product_type = webhook.data[1] if len(webhook.data) > 1 else "General"
if not isinstance(images_info, list):
raise HTTPException(status_code=HTTP_BAD_REQUEST, detail="Invalid images data")
urls = []
for img_dict in images_info:
if isinstance(img_dict, dict) and "url" in img_dict:
urls.append(img_dict["url"])
if not urls:
raise HTTPException(status_code=HTTP_BAD_REQUEST, detail=ERROR_NO_VALID_URLS)
# ABSOLUTE QUOTA GATE - CHECK BEFORE ANY PROCESSING
num_images = len(urls)
rate_check = check_rate_limiting(client_ip)
if not rate_check.get("allowed", True):
wait_time = rate_check.get("wait_time_seconds", 9000)
message = rate_check.get("message", "Quota exceeded")
error_detail = {
"error": message,
"retry_after": wait_time,
"quota_exceeded": True,
"recovery_hours": wait_time / 3600
}
raise HTTPException(
status_code=429,
detail={"error": json.dumps(error_detail)},
headers={"Retry-After": str(wait_time)}
)
# SMART QUOTA VALIDATION
available_quota = rate_check.get("available_quota", 0)
validation = validate_image_count_for_quota(available_quota, num_images, product_type)
if not validation.get("valid", False):
# Calculate appropriate wait time based on quota needed
estimated_needed = validation.get("estimated_needed", 0)
if estimated_needed <= 60:
recovery_wait = 1800 # 30 minutes for small batches
elif estimated_needed <= 120:
recovery_wait = 3600 # 1 hour for medium batches
else:
recovery_wait = 7200 # 2 hours for large batches
logging.warning(f"{EMOJI_MAP['WARNING']} Smart quota gate: {num_images} images need {estimated_needed:.1f}s, available: {available_quota:.1f}s")
update_rate_limiting(client_ip, quota_error=True, retry_after_override=recovery_wait)
error_detail = {
"error": "Smart quota management: insufficient quota for safe processing",
"retry_after": recovery_wait,
"quota_exceeded": True,
"image_count_exceeded": True,
"recovery_hours": recovery_wait / 3600,
"image_count": num_images,
"available_quota": available_quota,
"estimated_needed": estimated_needed,
"max_safe_images": validation.get("max_safe_images", 0),
"efficiency": validation.get("efficiency", "N/A"),
"message": validation.get("message", "Quota insufficient")
}
raise HTTPException(
status_code=429,
detail={"error": json.dumps(error_detail)},
headers={"Retry-After": str(recovery_wait)}
)
# Generate request ID after validation passes
request_id = generate_request_id(urls, product_type)
# Log X-IP-Token if present (for quota tracking)
x_ip_token = request.headers.get("x-ip-token")
if x_ip_token:
logging.info(f"{EMOJI_MAP['INFO']} Request received with X-IP-Token for quota tracking")
# Log rate limiting info
logging.info(f"{EMOJI_MAP['INFO']} Shopify webhook from {client_ip}, request_id: {request_id}")
# Special handling for wake-up requests (single placeholder image with "Test" product type)
if len(urls) == 1 and product_type == "Test" and "placeholder.com" in urls[0]:
logging.info(f"{EMOJI_MAP['INFO']} Wake-up request detected, returning minimal response")
return {
"status": STATUS_SUCCESS,
"processed_images": [{
"url": urls[0],
"status": STATUS_PROCESSED,
"base64_image": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChwGA60e6kgAAAABJRU5ErkJggg==", # 1x1 transparent PNG
"color": "#ffffff",
"image_type": "wake_up",
"artifacts": "false"
}]
}
result = process_images_with_rate_limiting(urls, product_type, client_ip, request_id)
return {
"status": result["status"],
"processed_images": [
{
"url": img["url"],
"status": img["status"],
"base64_image": img.get("base64_image", ""),
"hex_color": img.get("metadata", {}).get("hex_color"),
"image_type": img.get("metadata", {}).get("final_image_type"),
"artifacts": img.get("metadata", {}).get("artifacts")
}
for img in result["processed_images"]
]
}
@app.post("/api/batch")
async def batch_process(requests: List[ImageRequest], http_request: Request):
# Get client IP
client_ip = get_client_ip(http_request)
# Log batch request
logging.info(f"{EMOJI_MAP['INFO']} Batch request from {client_ip} with {len(requests)} items")
results = []
for i, req in enumerate(requests):
try:
# Generate unique request ID for each item in batch
request_id = f"batch_{generate_request_id(req.urls, req.product_type)}_{i}"
result = process_images_with_rate_limiting(req.urls, req.product_type, client_ip, request_id)
results.append(result)
except HTTPException as e:
# Handle rate limiting errors in batch
if e.status_code == 429:
results.append({
"status": "rate_limited",
"error": e.detail,
"urls": req.urls,
"retry_after": e.headers.get("Retry-After", "30")
})
# Stop processing remaining items if rate limited
logging.warning(f"{EMOJI_MAP['WARNING']} Batch processing stopped due to rate limiting")
break
else:
results.append({
"status": "error",
"error": str(e.detail),
"urls": req.urls
})
except Exception as e:
results.append({
"status": "error",
"error": str(e),
"urls": req.urls
})
return {
"status": "success",
"batch_results": results,
"total_requests": len(requests),
"processed_requests": len(results)
}
# ----------------------------------------------------------------------
# ERROR HANDLERS
# ----------------------------------------------------------------------
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
return JSONResponse(
status_code=exc.status_code,
content={
"status": "error",
"error": exc.detail,
"timestamp": time.time()
}
)
@app.exception_handler(Exception)
async def general_exception_handler(request: Request, exc: Exception):
# If it's already an HTTPException with 429, let it through
if isinstance(exc, HTTPException) and exc.status_code == 429:
return JSONResponse(
status_code=429,
content=exc.detail if isinstance(exc.detail, dict) else {"error": exc.detail},
headers=exc.headers if hasattr(exc, 'headers') else {"Retry-After": "900"}
)
# Determine error type and prepare detailed response
error_type = "UNKNOWN_ERROR"
error_message = str(exc)
error_details = {}
status_code = 500
# Check for specific error types
if (isinstance(exc, gradio.exceptions.Error) and ("GPU limit" in error_message or "quota exceeded" in error_message)) or \
("GPU" in error_message and ("limit" in error_message or "quota" in error_message)) or \
"ZeroGPU quota exceeded" in error_message:
# For GPU quota errors, log a simple notification without traceback
logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota exceeded: Space app has reached its GPU limit")
error_type = "GPU_LIMIT_ERROR"
error_details["gpu_error"] = True
# Calculate retry-after time from error message
retry_after = calculate_retry_after_from_quota(error_message)
error_details["retry_after"] = retry_after
# Parse any specific retry time mentioned in the error
parsed_retry = parse_retry_time_from_error(error_message)
if parsed_retry:
error_details["retry_after"] = parsed_retry
logging.info(f"{EMOJI_MAP['INFO']} Parsed retry time from error: {parsed_retry}s")
# Provide quota recovery information
error_details["quota_info"] = {
"message": "GPU quota exceeded. ZeroGPU quota refills at 1 GPU second per 30 real seconds.",
"recommended_wait_times": {
"minimal": 900, # 15 minutes for ~30s GPU quota
"moderate": 1800, # 30 minutes for ~60s GPU quota
"full": 5400 # 90 minutes for ~180s GPU quota
},
"note": "Quota is managed by Hugging Face infrastructure, not this application.",
"calculated_retry": error_details["retry_after"]
}
# Use 429 status code for rate limiting
status_code = 429
elif "GPU task aborted" in error_message:
logging.error(f"{EMOJI_MAP['ERROR']} GPU task aborted")
error_type = "GPU_TASK_ABORTED"
error_details["gpu_error"] = True
elif "gradio.exceptions.Error" in str(type(exc)):
error_type = "GRADIO_ERROR"
error_details["gradio_error"] = True
# For Gradio errors related to GPU limits, don't log traceback
if "GPU limit" in error_message or "GPU quota" in error_message:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota exceeded: Space app has reached its GPU limit")
error_type = "GPU_LIMIT_ERROR"
error_details["gpu_error"] = True
# Calculate retry-after time from error message
retry_after = calculate_retry_after_from_quota(error_message)
error_details["retry_after"] = retry_after
# Parse any specific retry time mentioned in the error
parsed_retry = parse_retry_time_from_error(error_message)
if parsed_retry:
error_details["retry_after"] = parsed_retry
logging.info(f"{EMOJI_MAP['INFO']} Parsed retry time from Gradio error: {parsed_retry}s")
# Use 429 status code for rate limiting
status_code = 429
else:
logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}")
logging.error(traceback.format_exc())
elif isinstance(exc, ValueError):
error_type = "VALIDATION_ERROR"
logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}")
logging.error(traceback.format_exc())
elif isinstance(exc, TimeoutError):
error_type = "TIMEOUT_ERROR"
logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}")
logging.error(traceback.format_exc())
else:
# For other errors, log with traceback
logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}")
logging.error(traceback.format_exc())
# Prepare response with detailed error information
error_response = {
"status": "error",
"error_type": error_type,
"error_message": error_message,
"error_details": error_details,
"timestamp": time.time(),
"request_path": str(request.url.path),
"request_method": request.method
}
# Only include traceback for non-GPU quota errors
if error_type not in ["GPU_LIMIT_ERROR", "GPU_TASK_ABORTED"] and not ("GPU limit" in error_message) and not ("ZeroGPU quota exceeded" in error_message):
tb_lines = traceback.format_exception(type(exc), exc, exc.__traceback__)
error_response["traceback"] = ''.join(tb_lines)
# For GPU quota errors, log a simple summary instead of full response
if error_type == "GPU_LIMIT_ERROR":
logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota limit response sent to client with retry_after: {error_details.get('retry_after', 900)}s")
# Store last quota error information for monitoring
if not hasattr(app.state, "last_quota_error"):
app.state.last_quota_error = {}
app.state.last_quota_error = {
"timestamp": time.time(),
"retry_after": error_details.get("retry_after", 900),
"error_message": error_message
}
else:
# Log the full error details for other errors
logging.error(f"{EMOJI_MAP['ERROR']} Error response: {json.dumps(error_response, indent=2)}")
# Prepare response headers
headers = {}
if error_type == "GPU_LIMIT_ERROR" and "retry_after" in error_details:
headers["Retry-After"] = str(error_details["retry_after"])
return JSONResponse(
status_code=status_code,
content=error_response,
headers=headers
)
# ----------------------------------------------------------------------
# MAIN
# ----------------------------------------------------------------------
if __name__ == "__main__":
# Configure uvicorn logging to avoid duplicates
log_config = uvicorn.config.LOGGING_CONFIG
log_config["formatters"]["default"]["fmt"] = "%(asctime)s [%(levelname)s] %(name)s: %(message)s"
log_config["formatters"]["access"]["fmt"] = '%(asctime)s [%(levelname)s] %(name)s: %(client_addr)s - "%(request_line)s" %(status_code)s'
# Disable duplicate logging from uvicorn
log_config["loggers"]["uvicorn"]["propagate"] = False
log_config["loggers"]["uvicorn.access"]["propagate"] = False
uvicorn.run(
app,
host=API_HOST,
port=API_PORT,
log_level="info",
log_config=log_config
)
|