File size: 4,204 Bytes
9df2e22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from typing import List
import numpy as np
from librosa.util import peak_pick

from preprocess import *


def smooth(x, window_len=11, window="hanning"):
    if x.ndim != 1:
        raise ValueError

    if x.size < window_len:
        raise ValueError

    if window_len < 3:
        return x

    if not window in ["flat", "hanning", "hamming", "bartlett", "blackman"]:
        raise ValueError

    s = np.r_[x[window_len - 1 : 0 : -1], x, x[-2 : -window_len - 1 : -1]]
    # print(len(s))
    if window == "flat":  # moving average
        w = np.ones(window_len, "d")
    else:
        w = eval("np." + window + "(window_len)")

    y = np.convolve(w / w.sum(), s, mode="valid")

    return y


def detect(don_inference, ka_inference, delta=0.05):
    don_inference = smooth(don_inference, 5)
    ka_inference = smooth(ka_inference, 5)

    don_timestamp = (
        peak_pick(
            x=don_inference,
            pre_max=1,
            post_max=2,
            pre_avg=4,
            post_avg=5,
            delta=delta,
            wait=3,
        )
        + 7
    )  # 実際は7フレーム目のところの音
    ka_timestamp = (
        peak_pick(
            x=ka_inference,
            pre_max=1,
            post_max=2,
            pre_avg=4,
            post_avg=5,
            delta=delta,
            wait=3,
        )
        + 7
    )

    print(don_timestamp)
    print(ka_timestamp)

    don_timestamp = don_timestamp[
        np.where(don_inference[don_timestamp] > ka_inference[don_timestamp])
    ]

    ka_timestamp = ka_timestamp[
        np.where(ka_inference[ka_timestamp] > don_inference[ka_timestamp])
    ]

    return don_timestamp, ka_timestamp


# def note_to_drumroll(timestamp, max_gap=5, min_note=3):
#     drumroll = []
#     note = 0
#     for i in range(1, len(timestamp)):
#         if timestamp[i] - timestamp[i - 1] <= max_gap:
#             note += 1
#         else:
#             if note >= min_note:
#                 drumroll.append((timestamp[i - note - 1], timestamp[i - 1]))
#             note = 0
#     if note >= min_note:
#         drumroll.append((timestamp[-note - 1], timestamp[-1]))
#     return drumroll

def synthesize(don_timestamp, ka_timestamp, song, filepath):
    song.don_timestamp = don_timestamp
    song.timestamp = song.don_timestamp * 512 / song.samplerate
    # print(len(song.timestamp))
    song.synthesize(diff="don")

    # song.ka_timestamp = song.don_timestamp
    song.ka_timestamp = ka_timestamp
    song.timestamp = song.ka_timestamp * 512 / song.samplerate
    # print(len(song.timestamp))
    song.synthesize(diff="ka")

    song.save(filepath)


def create_tja(
    song,
    timestamps: List[tuple],
    title="untitled",
    subtitle="--",
    wave="untitled.ogg",
    safezone=2,
):
    tja = f"TITLE: {title}\nSUBTITLE: {subtitle}\nBPM: 240\nWAVE:{wave}\nOFFSET:0\n\n"

    for i, (don, ka) in enumerate(timestamps):
        try:
            level = [3, 5, 7, 8, 9][i]
            scroll = [0.6, 0.7, 0.8, 0.9, 1.0][i]

            don_timestamp = np.rint(don * 512 / song.samplerate * 100).astype(np.int32)
            ka_timestamp = np.rint(ka * 512 / song.samplerate * 100).astype(np.int32)
            length = np.max(
                (
                    don_timestamp[-1] if don_timestamp.size > 0 else 0,
                    ka_timestamp[-1] if ka_timestamp.size > 0 else 0,
                )
            )
            safezone_keep = 0
            tja += f"COURSE:{i}\nLEVEL:{level}\n\n#START\n#SCROLL {scroll}\n"
            for time in range(length):
                if np.isin(time, don_timestamp) == True and safezone_keep <= 0:
                    tja += "1"
                    safezone_keep = safezone
                elif np.isin(time, ka_timestamp) == True and safezone_keep <= 0:
                    tja += "2"
                    safezone_keep = safezone
                else:
                    tja += "0"
                    safezone_keep -= 1
                if time % 100 == 99:
                    tja += ",\n"
            if length % 100 != 0:
                tja += "0" * (100 - (length % 100)) + ",\n"
            tja += "#END\n\n"
        except:
            pass

    return tja