Spaces:
Sleeping
Sleeping
import torch | |
import librosa | |
from speechbrain.inference.classifiers import EncoderClassifier | |
from pydub import AudioSegment | |
import gradio as gr | |
import uuid | |
import os | |
# Load model once | |
classifier = EncoderClassifier.from_hparams( | |
source="Jzuluaga/accent-id-commonaccent_ecapa", | |
savedir="pretrained_models/accent-id-commonaccent_ecapa" | |
) | |
def classify_accent(video): | |
# Generate unique filename | |
temp_wav = f"/tmp/{uuid.uuid4().hex}.wav" | |
# Convert to .wav | |
audio = AudioSegment.from_file(video, format="mp4") | |
audio.export(temp_wav, format="wav") | |
# Load waveform | |
waveform, sr = librosa.load(temp_wav, sr=16000, mono=True) | |
waveform_tensor = torch.tensor(waveform).unsqueeze(0) | |
# Predict | |
prediction = classifier.classify_batch(waveform_tensor) | |
_, score, _, text_lab = prediction | |
# Cleanup | |
os.remove(temp_wav) | |
return f"Accent: {text_lab[0]} (Confidence: {score.item():.2f})" | |
app = gr.Interface( | |
fn=classify_accent, | |
inputs=gr.Video(label="Upload an MP4"), | |
outputs=gr.Text(label="Prediction"), | |
title="English Accent Classifier", | |
description="Upload a short MP4 video of spoken English to detect accent." | |
) | |
if __name__ == "__main__": | |
app.launch() | |