Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,59 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
| 2 |
import mimetypes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
def transcribe(audio_path):
|
| 5 |
try:
|
| 6 |
-
#
|
| 7 |
-
mime_type, _ = mimetypes.guess_type(audio_path)
|
| 8 |
ext = os.path.splitext(audio_path)[1].lower()
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
| 16 |
|
|
|
|
| 17 |
result = pipe(audio_path, chunk_length_s=30, generate_kwargs={"task": "transcribe", "language": "sv"})
|
| 18 |
return result["text"]
|
| 19 |
-
|
| 20 |
except Exception as e:
|
| 21 |
-
return f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
import mimetypes
|
| 5 |
+
from pydub import AudioSegment
|
| 6 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 7 |
+
|
| 8 |
+
# Set device and precision
|
| 9 |
+
device = "cpu"
|
| 10 |
+
torch_dtype = torch.float32
|
| 11 |
+
|
| 12 |
+
# Load KB-Whisper model
|
| 13 |
+
model_id = "KBLab/kb-whisper-large"
|
| 14 |
+
|
| 15 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 16 |
+
model_id, torch_dtype=torch_dtype
|
| 17 |
+
).to(device)
|
| 18 |
+
|
| 19 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 20 |
+
|
| 21 |
+
pipe = pipeline(
|
| 22 |
+
"automatic-speech-recognition",
|
| 23 |
+
model=model,
|
| 24 |
+
tokenizer=processor.tokenizer,
|
| 25 |
+
feature_extractor=processor.feature_extractor,
|
| 26 |
+
device=device,
|
| 27 |
+
torch_dtype=torch_dtype,
|
| 28 |
+
)
|
| 29 |
|
| 30 |
def transcribe(audio_path):
|
| 31 |
try:
|
| 32 |
+
# Get file extension
|
|
|
|
| 33 |
ext = os.path.splitext(audio_path)[1].lower()
|
| 34 |
|
| 35 |
+
# Convert to WAV if not already
|
| 36 |
+
if ext != ".wav":
|
| 37 |
+
try:
|
| 38 |
+
sound = AudioSegment.from_file(audio_path)
|
| 39 |
+
converted_path = audio_path.replace(ext, ".converted.wav")
|
| 40 |
+
sound.export(converted_path, format="wav")
|
| 41 |
+
audio_path = converted_path
|
| 42 |
+
except Exception as e:
|
| 43 |
+
return f"Error converting audio to WAV: {str(e)}"
|
| 44 |
|
| 45 |
+
# Transcribe
|
| 46 |
result = pipe(audio_path, chunk_length_s=30, generate_kwargs={"task": "transcribe", "language": "sv"})
|
| 47 |
return result["text"]
|
| 48 |
+
|
| 49 |
except Exception as e:
|
| 50 |
+
return f"Transcription failed: {str(e)}"
|
| 51 |
+
|
| 52 |
+
# Gradio UI
|
| 53 |
+
gr.Interface(
|
| 54 |
+
fn=transcribe,
|
| 55 |
+
inputs=gr.Audio(type="filepath", label="Upload Audio (.m4a, .mp3, .wav)"),
|
| 56 |
+
outputs=gr.Textbox(label="Swedish Transcript"),
|
| 57 |
+
title="Swedish Speech Transcriber with KB-Whisper",
|
| 58 |
+
description="Supports .m4a, .mp3, .wav files. Transcribes spoken Swedish using KBLab's Whisper Large model. May take time on CPU.",
|
| 59 |
+
).launch()
|