from typing import Dict
from typing import List
from typing import Tuple
from typing import Union
from pathlib import Path
import gradio as gr
import torch
import argparse
from threading import Thread
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    GenerationConfig,
    PreTrainedModel,
    PreTrainedTokenizer,
    PreTrainedTokenizerFast,
)
import warnings
import spaces
import os

warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')

MODEL_PATH = os.environ.get('MODEL_PATH', 'IndexTeam/Index-1.9B-Chat')
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)

tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, 
                                             torch_dtype=torch.bfloat16, 
                                             device_map="auto", 
                                             trust_remote_code=True)

def _resolve_path(path: Union[str, Path]) -> Path:
    return Path(path).expanduser().resolve()

@spaces.GPU
def hf_gen(dialog: List, top_k, top_p, temperature, repetition_penalty, max_dec_len):
    """generate model output with huggingface api

    Args:
        query (str): actual model input.
        top_p (float): only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
        temperature (float): Strictly positive float value used to modulate the logits distribution.
        max_dec_len (int): The maximum numbers of tokens to generate.

    Yields:
        str: real-time generation results of hf model
    """
    inputs = tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=False)
    enc = tokenizer(inputs, return_tensors="pt").to("cuda")
    streamer = TextIteratorStreamer(tokenizer, **tokenizer.init_kwargs)
    generation_kwargs = dict(
        enc,
        do_sample=True,
        top_k=int(top_k),
        top_p=float(top_p),
        temperature=float(temperature),
        repetition_penalty=float(repetition_penalty),
        max_new_tokens=int(max_dec_len),
        pad_token_id=tokenizer.eos_token_id,
        streamer=streamer,
    )
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    answer = ""
    for new_text in streamer:
        answer += new_text
        yield answer[len(inputs):]

@spaces.GPU
def generate(chat_history: List, query, top_k, top_p, temperature, repetition_penalty, max_dec_len, system_message):
    """generate after hitting "submit" button

    Args:
        chat_history (List): [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. list that stores all QA records
        query (str): query of current round
        top_p (float): only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
        temperature (float): strictly positive float value used to modulate the logits distribution.
        max_dec_len (int): The maximum numbers of tokens to generate.

    Yields:
        List: [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n], [q_n+1, a_n+1]]. chat_history + QA of current round.
    """
    assert query != "", "Input must not be empty!!!"
    # apply chat template
    model_input = []
    if system_message:
        model_input.append({
            "role": "system",
            "content": system_message
        })
    for q, a in chat_history:
        model_input.append({"role": "user", "content": q})
        model_input.append({"role": "assistant", "content": a})
    model_input.append({"role": "user", "content": query})
    # yield model generation
    chat_history.append([query, ""])
    for answer in hf_gen(model_input, top_k, top_p, temperature, repetition_penalty, max_dec_len):
        chat_history[-1][1] = answer.strip(tokenizer.eos_token)
        yield gr.update(value=""), chat_history

@spaces.GPU
def regenerate(chat_history: List, top_k, top_p, temperature, repetition_penalty, max_dec_len, system_message):
    """re-generate the answer of last round's query

    Args:
        chat_history (List): [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. list that stores all QA records
        top_p (float): only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
        temperature (float): strictly positive float value used to modulate the logits distribution.
        max_dec_len (int): The maximum numbers of tokens to generate.

    Yields:
        List: [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. chat_history
    """
    assert len(chat_history) >= 1, "History is empty. Nothing to regenerate!!"
    # apply chat template
    model_input = []
    if system_message:
        model_input.append({
            "role": "system",
            "content": system_message
        })
    for q, a in chat_history[:-1]:
        model_input.append({"role": "user", "content": q})
        model_input.append({"role": "assistant", "content": a})
    model_input.append({"role": "user", "content": chat_history[-1][0]})
    # yield model generation
    for answer in hf_gen(model_input, top_k, top_p, temperature, repetition_penalty, max_dec_len):
        # chat_history[-1][1] = answer.strip("</s>")
        chat_history[-1][1] = answer.strip(tokenizer.eos_token)
        yield gr.update(value=""), chat_history


def clear_history():
    """clear all chat history

    Returns:
        List: empty chat history
    """
    torch.cuda.empty_cache()
    return []


def reverse_last_round(chat_history):
    """reverse last round QA and keep the chat history before

    Args:
        chat_history (List): [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. list that stores all QA records

    Returns:
        List: [[q_1, a_1], [q_2, a_2], ..., [q_n-1, a_n-1]]. chat_history without last round.
    """
    assert len(chat_history) >= 1, "History is empty. Nothing to reverse!!"
    return chat_history[:-1]

# launch gradio demo
with gr.Blocks(theme="soft") as demo:
    gr.Markdown("""# Index-1.9B Gradio Demo""")

    with gr.Row():
        with gr.Column(scale=1):
            top_k = gr.Slider(1, 10, value=5, step=1, label="top_k")
            top_p = gr.Slider(0, 1, value=0.8, step=0.1, label="top_p")
            temperature = gr.Slider(0.1, 2.0, value=0.3, step=0.1, label="temp")
            repetition_penalty = gr.Slider(0.1, 2.0, value=1.1, step=0.1, label="repp")
            max_dec_len = gr.Slider(1, 4096, value=1024, step=1, label="max_new")
            with gr.Row():
                system_message = gr.Textbox(label="System Message", placeholder="Input your system message", value="你是由哔哩哔哩自主研发的大语言模型,名为“Index”。你能够根据用户传入的信息,帮助用户完成指定的任务,并生成恰当的、符合要求的回复。")
        with gr.Column(scale=10):
            chatbot = gr.Chatbot(bubble_full_width=False, height=500, label='Index-1.9B')
            user_input = gr.Textbox(label="User", placeholder="Input your query here!", lines=8)
            with gr.Row():
                submit = gr.Button("🚀 Submit")
                clear = gr.Button("🧹 Clear")
                regen = gr.Button("🔄 Regenerate")
                reverse = gr.Button("⬅️ Reverse")
    
    submit.click(generate, inputs=[chatbot, user_input, top_k, top_p, temperature, repetition_penalty, max_dec_len, system_message],
                 outputs=[user_input, chatbot])
    regen.click(regenerate, inputs=[chatbot, top_k, top_p, temperature, repetition_penalty, max_dec_len, system_message],
                outputs=[user_input, chatbot])
    clear.click(clear_history, inputs=[], outputs=[chatbot])
    reverse.click(reverse_last_round, inputs=[chatbot], outputs=[chatbot])

    demo.queue().launch()