Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import time
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
import datetime
|
7 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
import torch
|
9 |
|
10 |
-
### SET YOUR ASSEMBLYAI API KEY
|
11 |
-
ASSEMBLYAI_API_KEY = os.getenv("ASSEMBLYAI_API_KEY", "your_assemblyai_api_key")
|
12 |
-
headers = {"authorization": ASSEMBLYAI_API_KEY}
|
13 |
-
notes_file = "notes.json"
|
14 |
-
|
15 |
-
### LOAD LLM
|
16 |
model_id = "IlmaJiyadh/phi3-4k-ft"
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
18 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -22,82 +115,17 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
22 |
trust_remote_code=True
|
23 |
)
|
24 |
|
25 |
-
### TRANSCRIBE AUDIO WITH ASSEMBLYAI
|
26 |
-
def transcribe(audio_path):
|
27 |
-
with open(audio_path, 'rb') as f:
|
28 |
-
upload_res = requests.post("https://api.assemblyai.com/v2/upload", headers=headers, files={"file": f})
|
29 |
-
audio_url = upload_res.json()["upload_url"]
|
30 |
-
|
31 |
-
transcript_res = requests.post("https://api.assemblyai.com/v2/transcript", json={"audio_url": audio_url}, headers=headers)
|
32 |
-
transcript_id = transcript_res.json()["id"]
|
33 |
-
|
34 |
-
while True:
|
35 |
-
poll = requests.get(f"https://api.assemblyai.com/v2/transcript/{transcript_id}", headers=headers).json()
|
36 |
-
if poll['status'] == 'completed':
|
37 |
-
return poll['text']
|
38 |
-
elif poll['status'] == 'error':
|
39 |
-
return f"Transcription failed: {poll['error']}"
|
40 |
-
time.sleep(2)
|
41 |
-
|
42 |
-
### SUMMARIZE USING LLM
|
43 |
def summarize(text):
|
44 |
prompt = f"Below is a lecture transcript. Take lecture notes in bullet points.\n\nInput:\n{text}\n\nSummary:\n"
|
45 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
46 |
outputs = model.generate(**inputs, max_new_tokens=200, temperature=0.7, use_cache=False)
|
47 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
all_notes.append(data)
|
58 |
-
with open(notes_file, "w") as f:
|
59 |
-
json.dump(all_notes, f, indent=2)
|
60 |
-
|
61 |
-
### SEARCH NOTES
|
62 |
-
def search_notes(query):
|
63 |
-
if not os.path.exists(notes_file):
|
64 |
-
return "No notes available yet."
|
65 |
-
with open(notes_file, "r") as f:
|
66 |
-
notes = json.load(f)
|
67 |
-
results = [n for n in notes if query.lower() in n['summary'].lower() or query.lower() in n['transcript'].lower()]
|
68 |
-
if not results:
|
69 |
-
return "No matching notes found."
|
70 |
-
return "\n\n".join([f"π
{n['date']}\n{n['summary']}" for n in results])
|
71 |
-
|
72 |
-
### FULL PIPELINE
|
73 |
-
def full_pipeline(audio):
|
74 |
-
if audio is None:
|
75 |
-
return "No audio provided", "", ""
|
76 |
-
|
77 |
-
transcript = transcribe(audio)
|
78 |
-
summary = summarize(transcript)
|
79 |
-
date_str = str(datetime.date.today())
|
80 |
-
save_note(date_str, transcript, summary)
|
81 |
-
return transcript, summary, f"β
Lecture saved for {date_str}"
|
82 |
-
|
83 |
-
### BUILD GRADIO UI
|
84 |
-
with gr.Blocks() as demo:
|
85 |
-
gr.Markdown("# π Lecture Assistant (Audio β Summary + Search)")
|
86 |
-
with gr.Row():
|
87 |
-
with gr.Column():
|
88 |
-
#audio_input = gr.Audio(source="microphone", type="filepath", label="ποΈ Record Audio")
|
89 |
-
audio_input = gr.Audio(type="filepath", label="ποΈ Record Audio")
|
90 |
-
submit_btn = gr.Button("Transcribe & Summarize")
|
91 |
-
transcript_output = gr.Textbox(label="π Transcript")
|
92 |
-
summary_output = gr.Textbox(label="π Summary")
|
93 |
-
save_status = gr.Textbox(label="πΎ Save Status")
|
94 |
-
|
95 |
-
with gr.Column():
|
96 |
-
search_query = gr.Textbox(label="π Search Notes")
|
97 |
-
search_btn = gr.Button("Search")
|
98 |
-
search_output = gr.Textbox(label="Results")
|
99 |
-
|
100 |
-
submit_btn.click(fn=full_pipeline, inputs=audio_input, outputs=[transcript_output, summary_output, save_status])
|
101 |
-
search_btn.click(fn=search_notes, inputs=search_query, outputs=search_output)
|
102 |
-
|
103 |
-
demo.launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import requests
|
3 |
+
# import time
|
4 |
+
# import json
|
5 |
+
# import os
|
6 |
+
# import datetime
|
7 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
# import torch
|
9 |
+
|
10 |
+
# ### SET YOUR ASSEMBLYAI API KEY
|
11 |
+
# ASSEMBLYAI_API_KEY = os.getenv("ASSEMBLYAI_API_KEY", "your_assemblyai_api_key")
|
12 |
+
# headers = {"authorization": ASSEMBLYAI_API_KEY}
|
13 |
+
# notes_file = "notes.json"
|
14 |
+
|
15 |
+
# ### LOAD LLM
|
16 |
+
# model_id = "IlmaJiyadh/phi3-4k-ft"
|
17 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_id)
|
18 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
# model_id,
|
20 |
+
# device_map="auto",
|
21 |
+
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
22 |
+
# trust_remote_code=True
|
23 |
+
# )
|
24 |
+
|
25 |
+
# ### TRANSCRIBE AUDIO WITH ASSEMBLYAI
|
26 |
+
# def transcribe(audio_path):
|
27 |
+
# with open(audio_path, 'rb') as f:
|
28 |
+
# upload_res = requests.post("https://api.assemblyai.com/v2/upload", headers=headers, files={"file": f})
|
29 |
+
# audio_url = upload_res.json()["upload_url"]
|
30 |
+
|
31 |
+
# transcript_res = requests.post("https://api.assemblyai.com/v2/transcript", json={"audio_url": audio_url}, headers=headers)
|
32 |
+
# transcript_id = transcript_res.json()["id"]
|
33 |
+
|
34 |
+
# while True:
|
35 |
+
# poll = requests.get(f"https://api.assemblyai.com/v2/transcript/{transcript_id}", headers=headers).json()
|
36 |
+
# if poll['status'] == 'completed':
|
37 |
+
# return poll['text']
|
38 |
+
# elif poll['status'] == 'error':
|
39 |
+
# return f"Transcription failed: {poll['error']}"
|
40 |
+
# time.sleep(2)
|
41 |
+
|
42 |
+
# ### SUMMARIZE USING LLM
|
43 |
+
# def summarize(text):
|
44 |
+
# prompt = f"Below is a lecture transcript. Take lecture notes in bullet points.\n\nInput:\n{text}\n\nSummary:\n"
|
45 |
+
# inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
46 |
+
# outputs = model.generate(**inputs, max_new_tokens=200, temperature=0.7, use_cache=False)
|
47 |
+
# return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
+
|
49 |
+
# ## SAVE TO JSON
|
50 |
+
# def save_note(date, transcript, summary):
|
51 |
+
# data = {"date": date, "transcript": transcript, "summary": summary}
|
52 |
+
# if os.path.exists(notes_file):
|
53 |
+
# with open(notes_file, "r") as f:
|
54 |
+
# all_notes = json.load(f)
|
55 |
+
# else:
|
56 |
+
# all_notes = []
|
57 |
+
# all_notes.append(data)
|
58 |
+
# with open(notes_file, "w") as f:
|
59 |
+
# json.dump(all_notes, f, indent=2)
|
60 |
+
|
61 |
+
# ### SEARCH NOTES
|
62 |
+
# def search_notes(query):
|
63 |
+
# if not os.path.exists(notes_file):
|
64 |
+
# return "No notes available yet."
|
65 |
+
# with open(notes_file, "r") as f:
|
66 |
+
# notes = json.load(f)
|
67 |
+
# results = [n for n in notes if query.lower() in n['summary'].lower() or query.lower() in n['transcript'].lower()]
|
68 |
+
# if not results:
|
69 |
+
# return "No matching notes found."
|
70 |
+
# return "\n\n".join([f"π
{n['date']}\n{n['summary']}" for n in results])
|
71 |
+
|
72 |
+
# ### FULL PIPELINE
|
73 |
+
# def full_pipeline(audio):
|
74 |
+
# if audio is None:
|
75 |
+
# return "No audio provided", "", ""
|
76 |
+
|
77 |
+
# transcript = transcribe(audio)
|
78 |
+
# summary = summarize(transcript)
|
79 |
+
# date_str = str(datetime.date.today())
|
80 |
+
# save_note(date_str, transcript, summary)
|
81 |
+
# return transcript, summary, f"β
Lecture saved for {date_str}"
|
82 |
+
|
83 |
+
# ### BUILD GRADIO UI
|
84 |
+
# with gr.Blocks() as demo:
|
85 |
+
# gr.Markdown("# π Lecture Assistant (Audio β Summary + Search)")
|
86 |
+
# with gr.Row():
|
87 |
+
# with gr.Column():
|
88 |
+
# #audio_input = gr.Audio(source="microphone", type="filepath", label="ποΈ Record Audio")
|
89 |
+
# audio_input = gr.Audio(type="filepath", label="ποΈ Record Audio")
|
90 |
+
# submit_btn = gr.Button("Transcribe & Summarize")
|
91 |
+
# transcript_output = gr.Textbox(label="π Transcript")
|
92 |
+
# summary_output = gr.Textbox(label="π Summary")
|
93 |
+
# save_status = gr.Textbox(label="πΎ Save Status")
|
94 |
+
|
95 |
+
# with gr.Column():
|
96 |
+
# search_query = gr.Textbox(label="π Search Notes")
|
97 |
+
# search_btn = gr.Button("Search")
|
98 |
+
# search_output = gr.Textbox(label="Results")
|
99 |
+
|
100 |
+
# submit_btn.click(fn=full_pipeline, inputs=audio_input, outputs=[transcript_output, summary_output, save_status])
|
101 |
+
# search_btn.click(fn=search_notes, inputs=search_query, outputs=search_output)
|
102 |
+
|
103 |
+
# demo.launch()
|
104 |
+
|
105 |
import gradio as gr
|
106 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
107 |
import torch
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
model_id = "IlmaJiyadh/phi3-4k-ft"
|
110 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
111 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
115 |
trust_remote_code=True
|
116 |
)
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
def summarize(text):
|
119 |
prompt = f"Below is a lecture transcript. Take lecture notes in bullet points.\n\nInput:\n{text}\n\nSummary:\n"
|
120 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
121 |
outputs = model.generate(**inputs, max_new_tokens=200, temperature=0.7, use_cache=False)
|
122 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
123 |
|
124 |
+
gr.Interface(
|
125 |
+
fn=summarize,
|
126 |
+
inputs=gr.Textbox(lines=10, label="π Paste Transcript"),
|
127 |
+
outputs=gr.Textbox(label="π Summary"),
|
128 |
+
title="π§ Transcript β Summary (Phi-3 Fine-tuned)",
|
129 |
+
description="Test only the summarization step."
|
130 |
+
).launch()
|
131 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|