Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
model_id = "IlmaJiyadh/phi3-4k-ft" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
trust_remote_code=True | |
) | |
def summarize(text): | |
prompt = f"Below is a lecture transcript. Take lecture notes in bullet points.\n\nInput:\n{text}\n\nSummary:\n" | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate(**inputs, max_new_tokens=200, temperature=0.7, use_cache=False) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
gr.Interface( | |
fn=summarize, | |
inputs=gr.Textbox(lines=10, label="π Paste Transcript"), | |
outputs=gr.Textbox(label="π Summary"), | |
title="π§ Transcript β Summary (Phi-3 Fine-tuned)", | |
description="Test only the summarization step." | |
).launch() | |