File size: 4,753 Bytes
90f85d4
 
fc40822
14b974b
90f85d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d813bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90f85d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14b974b
 
 
 
 
 
 
90f85d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc40822
 
 
90f85d4
 
 
 
 
 
 
 
 
 
 
fc40822
 
 
90f85d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc40822
90f85d4
 
d813bf6
90f85d4
 
 
 
 
 
 
 
 
d813bf6
35e2359
 
 
 
d813bf6
 
 
35e2359
90f85d4
 
35e2359
 
 
 
 
d813bf6
 
 
 
 
35e2359
d813bf6
90f85d4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import subprocess

commands = 'pip uninstall gradio -y; echo "pwd is: $(pwd)"; pip install ./gradio-12.34.57.tar.gz'
subprocess.run(commands, shell=True)

import json
import os

import shutil
import threading

import gradio as gr

from dialogues import DialogueTemplate
from huggingface_hub import Repository
from text_generation import Client

from utils import get_full_text, wrap_html_code

STYLE = """
// "done" class is injected when user has made
//  decision between two candidate generated answers
.message.bot.done {
  animation: colorTransition 2s ease-in-out;
}

// fade out animation effect when user selects a choice
@keyframes colorTransition {
  0% {
    background-color: var(--checkbox-background-color-selected);
  }
  100% {
    background-color: var(--background-fill-secondary);
  }
}
"""

HF_TOKEN = os.environ.get("HF_TOKEN", None)
REPO_ID = "sheonhan/rm-test-data"
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/starcoderbase-finetuned-oasst1"


LABELER_ID = "labeler_123"
SESSION_ID = "session_123"

client = Client(
    API_URL,
    headers={"Authorization": f"Bearer {HF_TOKEN}"},
)

repo = None
if HF_TOKEN:
    try:
        shutil.rmtree("./data/")
    except:
        pass
    print("Pulling repo...")
    repo = Repository(
        local_dir="./data/",
        clone_from=REPO_ID,
        use_auth_token=HF_TOKEN,
        repo_type="dataset",
    )
    repo.git_pull()

system_message = ""


def generate(user_message, history):
    past_messages = []
    for data in history:
        user_data, model_data = data

        past_messages.extend(
            [
                {"role": "user", "content": user_data},
                {"role": "assistant", "content": model_data.rstrip()},
            ]
        )

    if len(past_messages) < 1:
        dialogue_template = DialogueTemplate(
            system=system_message,
            messages=[{"role": "user", "content": user_message}],
            end_token="<|endoftext|>",
        )
        prompt = dialogue_template.get_inference_prompt()
    else:
        dialogue_template = DialogueTemplate(
            system=system_message,
            messages=past_messages + [{"role": "user", "content": user_message}],
            end_token="<|endoftext|>",
        )
        prompt = dialogue_template.get_inference_prompt()

    response_1 = client.generate_stream(
        prompt, temperature=0.1, stop_sequences=["<|end|>"]
    )

    response_2 = client.generate_stream(
        prompt, temperature=0.9, stop_sequences=["<|end|>"]
    )

    response_1_text = get_full_text(response_1)
    response_2_text = get_full_text(response_2)

    option_a = wrap_html_code(response_1_text.strip())
    option_b = wrap_html_code(response_2_text.strip())

    option_a = f"A: {option_a}"
    option_b = f"B: {option_b}"

    history.append((user_message, option_a, option_b))

    return "", history


def save_labeling_data(last_dialogue, score):
    (
        prompt,
        response_1,
        response_2,
    ) = last_dialogue
    
    response_1 = response_1[3:] # Remove label "A: "
    response_2 = response_2[3:] # Remove label "B: "

    file_name = "data.jsonl"

    if repo is not None:
        repo.git_pull(rebase=True)

        with open(os.path.join("data", file_name), "a", encoding="utf-8") as f:
            data = {
                "labeler_id": LABELER_ID,
                "session_id": SESSION_ID,
                "prompt": prompt,
                "response_1": response_1,
                "response_2": response_2,
                "score": score,
            }
            json.dump(data, f, ensure_ascii=False)
            f.write("\n")

        repo.push_to_hub()


def on_select(event: gr.SelectData, history):
    score = event.value
    index_to_delete = event.index

    threading.Thread(target=save_labeling_data, args=(history[-1], score)).start()

    del history[-1][index_to_delete]
    return history


with gr.Blocks(css=STYLE) as demo:
    chatbot = gr.Chatbot()
    user_message = gr.Textbox()
    clear = gr.Button("Clear")

    user_message.submit(
        generate,
        [user_message, chatbot],
        [user_message, chatbot],
        queue=False,
    ).then(
        None,
        None,
        None,
        _js="""()=>{
      let last_elem = document.querySelector("div.message.bot.done");
      last_elem.classList.remove("done");
}
""",
    )

    chatbot.select(on_select, chatbot, chatbot).then(
        None,
        None,
        None,
        _js="""()=>{

      let last_elem = document.querySelector("div.message.bot.latest");
      last_elem.classList.remove("latest");
      last_elem.classList.add("done");
}
""",
    )

    clear.click(lambda: None, None, chatbot, queue=False)

demo.launch()