# Project EmbodiedGen # # Copyright (c) 2025 Horizon Robotics. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. import gc import json import os from dataclasses import dataclass, field from shutil import copytree from time import time from typing import Optional import torch import tyro from embodied_gen.models.layout import build_scene_layout from embodied_gen.scripts.simulate_sapien import entrypoint as sim_cli from embodied_gen.scripts.textto3d import text_to_3d from embodied_gen.utils.config import GptParamsConfig from embodied_gen.utils.enum import LayoutInfo, Scene3DItemEnum from embodied_gen.utils.geometry import bfs_placement, compose_mesh_scene from embodied_gen.utils.gpt_clients import GPT_CLIENT from embodied_gen.utils.log import logger from embodied_gen.utils.process_media import ( load_scene_dict, parse_text_prompts, ) from embodied_gen.validators.quality_checkers import SemanticMatcher os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" @dataclass class LayoutGenConfig: task_descs: list[str] output_root: str bg_list: str = "outputs/bg_scenes/scene_list.txt" n_img_sample: int = 3 text_guidance_scale: float = 7.0 img_denoise_step: int = 25 n_image_retry: int = 4 n_asset_retry: int = 3 n_pipe_retry: int = 2 seed_img: Optional[int] = None seed_3d: Optional[int] = None seed_layout: Optional[int] = None keep_intermediate: bool = False output_iscene: bool = False insert_robot: bool = False gpt_params: GptParamsConfig = field( default_factory=lambda: GptParamsConfig( temperature=1.0, top_p=0.95, frequency_penalty=0.3, presence_penalty=0.5, ) ) def entrypoint() -> None: args = tyro.cli(LayoutGenConfig) SCENE_MATCHER = SemanticMatcher(GPT_CLIENT) task_descs = parse_text_prompts(args.task_descs) scene_dict = load_scene_dict(args.bg_list) gpt_params = args.gpt_params.to_dict() for idx, task_desc in enumerate(task_descs): logger.info(f"Generate Layout and 3D scene for task: {task_desc}") output_root = f"{args.output_root}/task_{idx:04d}" scene_graph_path = f"{output_root}/scene_tree.jpg" start_time = time() layout_info: LayoutInfo = build_scene_layout( task_desc, scene_graph_path, gpt_params ) prompts_mapping = {v: k for k, v in layout_info.objs_desc.items()} prompts = [ v for k, v in layout_info.objs_desc.items() if layout_info.objs_mapping[k] != Scene3DItemEnum.BACKGROUND.value ] for prompt in prompts: node = prompts_mapping[prompt] generation_log = text_to_3d( prompts=[ prompt, ], output_root=output_root, asset_names=[ node, ], n_img_sample=args.n_img_sample, text_guidance_scale=args.text_guidance_scale, img_denoise_step=args.img_denoise_step, n_image_retry=args.n_image_retry, n_asset_retry=args.n_asset_retry, n_pipe_retry=args.n_pipe_retry, seed_img=args.seed_img, seed_3d=args.seed_3d, keep_intermediate=args.keep_intermediate, ) layout_info.assets.update(generation_log["assets"]) layout_info.quality.update(generation_log["quality"]) # Background GEN (for efficiency, temp use retrieval instead) bg_node = layout_info.relation[Scene3DItemEnum.BACKGROUND.value] text = layout_info.objs_desc[bg_node] match_key = SCENE_MATCHER.query(text, str(scene_dict)) match_scene_path = f"{os.path.dirname(args.bg_list)}/{match_key}" bg_save_dir = os.path.join(output_root, "background") copytree(match_scene_path, bg_save_dir, dirs_exist_ok=True) layout_info.assets[bg_node] = bg_save_dir # BFS layout placement. layout_info = bfs_placement( layout_info, limit_reach_range=True if args.insert_robot else False, seed=args.seed_layout, ) layout_path = f"{output_root}/layout.json" with open(layout_path, "w") as f: json.dump(layout_info.to_dict(), f, indent=4) if args.output_iscene: compose_mesh_scene(layout_info, f"{output_root}/Iscene.glb") sim_cli( layout_path=layout_path, output_dir=output_root, insert_robot=args.insert_robot, ) torch.cuda.empty_cache() gc.collect() elapsed_time = (time() - start_time) / 60 logger.info( f"Layout generation done for {scene_graph_path}, layout result " f"in {layout_path}, finished in {elapsed_time:.2f} mins." ) logger.info(f"All tasks completed in {args.output_root}") if __name__ == "__main__": entrypoint()