Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,828 Bytes
be0ecc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import os
import random
from collections import defaultdict, deque
from functools import wraps
from typing import Literal
import numpy as np
import torch
import trimesh
from matplotlib.path import Path
from pyquaternion import Quaternion
from scipy.spatial import ConvexHull
from scipy.spatial.transform import Rotation as R
from shapely.geometry import Polygon
from embodied_gen.utils.enum import LayoutInfo, Scene3DItemEnum
from embodied_gen.utils.log import logger
__all__ = [
"bfs_placement",
"with_seed",
"matrix_to_pose",
"pose_to_matrix",
"quaternion_multiply",
"check_reachable",
"bfs_placement",
"compose_mesh_scene",
"compute_pinhole_intrinsics",
]
def matrix_to_pose(matrix: np.ndarray) -> list[float]:
"""Convert a 4x4 transformation matrix to a pose (x, y, z, qx, qy, qz, qw).
Args:
matrix (np.ndarray): 4x4 transformation matrix.
Returns:
List[float]: Pose as [x, y, z, qx, qy, qz, qw].
"""
x, y, z = matrix[:3, 3]
rot_mat = matrix[:3, :3]
quat = R.from_matrix(rot_mat).as_quat()
qx, qy, qz, qw = quat
return [x, y, z, qx, qy, qz, qw]
def pose_to_matrix(pose: list[float]) -> np.ndarray:
"""Convert pose (x, y, z, qx, qy, qz, qw) to a 4x4 transformation matrix.
Args:
List[float]: Pose as [x, y, z, qx, qy, qz, qw].
Returns:
matrix (np.ndarray): 4x4 transformation matrix.
"""
x, y, z, qx, qy, qz, qw = pose
r = R.from_quat([qx, qy, qz, qw])
matrix = np.eye(4)
matrix[:3, :3] = r.as_matrix()
matrix[:3, 3] = [x, y, z]
return matrix
def compute_xy_bbox(
vertices: np.ndarray, col_x: int = 0, col_y: int = 2
) -> list[float]:
x_vals = vertices[:, col_x]
y_vals = vertices[:, col_y]
return x_vals.min(), x_vals.max(), y_vals.min(), y_vals.max()
def has_iou_conflict(
new_box: list[float],
placed_boxes: list[list[float]],
iou_threshold: float = 0.0,
) -> bool:
new_min_x, new_max_x, new_min_y, new_max_y = new_box
for min_x, max_x, min_y, max_y in placed_boxes:
ix1 = max(new_min_x, min_x)
iy1 = max(new_min_y, min_y)
ix2 = min(new_max_x, max_x)
iy2 = min(new_max_y, max_y)
inter_area = max(0, ix2 - ix1) * max(0, iy2 - iy1)
if inter_area > iou_threshold:
return True
return False
def with_seed(seed_attr_name: str = "seed"):
"""A parameterized decorator that temporarily sets the random seed."""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
seed = kwargs.get(seed_attr_name, None)
if seed is not None:
py_state = random.getstate()
np_state = np.random.get_state()
torch_state = torch.get_rng_state()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
try:
result = func(*args, **kwargs)
finally:
random.setstate(py_state)
np.random.set_state(np_state)
torch.set_rng_state(torch_state)
return result
else:
return func(*args, **kwargs)
return wrapper
return decorator
def compute_convex_hull_path(
vertices: np.ndarray,
z_threshold: float = 0.05,
interp_per_edge: int = 3,
margin: float = -0.02,
) -> Path:
top_vertices = vertices[
vertices[:, 1] > vertices[:, 1].max() - z_threshold
]
top_xy = top_vertices[:, [0, 2]]
if len(top_xy) < 3:
raise ValueError("Not enough points to form a convex hull")
hull = ConvexHull(top_xy)
hull_points = top_xy[hull.vertices]
polygon = Polygon(hull_points)
polygon = polygon.buffer(margin)
hull_points = np.array(polygon.exterior.coords)
dense_points = []
for i in range(len(hull_points)):
p1 = hull_points[i]
p2 = hull_points[(i + 1) % len(hull_points)]
for t in np.linspace(0, 1, interp_per_edge, endpoint=False):
pt = (1 - t) * p1 + t * p2
dense_points.append(pt)
return Path(np.array(dense_points), closed=True)
def find_parent_node(node: str, tree: dict) -> str | None:
for parent, children in tree.items():
if any(child[0] == node for child in children):
return parent
return None
def all_corners_inside(hull: Path, box: list, threshold: int = 3) -> bool:
x1, x2, y1, y2 = box
corners = [[x1, y1], [x2, y1], [x1, y2], [x2, y2]]
num_inside = sum(hull.contains_point(c) for c in corners)
return num_inside >= threshold
def compute_axis_rotation_quat(
axis: Literal["x", "y", "z"], angle_rad: float
) -> list[float]:
if axis.lower() == 'x':
q = Quaternion(axis=[1, 0, 0], angle=angle_rad)
elif axis.lower() == 'y':
q = Quaternion(axis=[0, 1, 0], angle=angle_rad)
elif axis.lower() == 'z':
q = Quaternion(axis=[0, 0, 1], angle=angle_rad)
else:
raise ValueError(f"Unsupported axis '{axis}', must be one of x, y, z")
return [q.x, q.y, q.z, q.w]
def quaternion_multiply(
init_quat: list[float], rotate_quat: list[float]
) -> list[float]:
qx, qy, qz, qw = init_quat
q1 = Quaternion(w=qw, x=qx, y=qy, z=qz)
qx, qy, qz, qw = rotate_quat
q2 = Quaternion(w=qw, x=qx, y=qy, z=qz)
quat = q2 * q1
return [quat.x, quat.y, quat.z, quat.w]
def check_reachable(
base_xyz: np.ndarray,
reach_xyz: np.ndarray,
min_reach: float = 0.25,
max_reach: float = 0.85,
) -> bool:
"""Check if the target point is within the reachable range."""
distance = np.linalg.norm(reach_xyz - base_xyz)
return min_reach < distance < max_reach
@with_seed("seed")
def bfs_placement(
layout_info: LayoutInfo,
floor_margin: float = 0,
beside_margin: float = 0.1,
max_attempts: int = 3000,
rotate_objs: bool = True,
rotate_bg: bool = True,
limit_reach_range: bool = True,
robot_dim: float = 0.12,
seed: int = None,
) -> LayoutInfo:
object_mapping = layout_info.objs_mapping
position = {} # node: [x, y, z, qx, qy, qz, qw]
parent_bbox_xy = {}
placed_boxes_map = defaultdict(list)
mesh_info = defaultdict(dict)
robot_node = layout_info.relation[Scene3DItemEnum.ROBOT.value]
for node in object_mapping:
if object_mapping[node] == Scene3DItemEnum.BACKGROUND.value:
bg_quat = (
compute_axis_rotation_quat(
axis="y",
angle_rad=np.random.uniform(0, 2 * np.pi),
)
if rotate_bg
else [0, 0, 0, 1]
)
bg_quat = [round(q, 4) for q in bg_quat]
continue
mesh_path = (
f"{layout_info.assets[node]}/mesh/{node.replace(' ', '_')}.obj"
)
mesh_info[node]["path"] = mesh_path
mesh = trimesh.load(mesh_path)
vertices = mesh.vertices
z1 = np.percentile(vertices[:, 1], 1)
z2 = np.percentile(vertices[:, 1], 99)
if object_mapping[node] == Scene3DItemEnum.CONTEXT.value:
object_quat = [0, 0, 0, 1]
mesh_info[node]["surface"] = compute_convex_hull_path(vertices)
# Put robot in the CONTEXT edge.
x, y = random.choice(mesh_info[node]["surface"].vertices)
theta = np.arctan2(y, x)
quat_initial = Quaternion(axis=[0, 0, 1], angle=theta)
quat_extra = Quaternion(axis=[0, 0, 1], angle=np.pi)
quat = quat_extra * quat_initial
_pose = [x, y, z2 - z1, quat.x, quat.y, quat.z, quat.w]
position[robot_node] = [round(v, 4) for v in _pose]
node_box = [
x - robot_dim / 2,
x + robot_dim / 2,
y - robot_dim / 2,
y + robot_dim / 2,
]
placed_boxes_map[node].append(node_box)
elif rotate_objs:
# For manipulated and distractor objects, apply random rotation
angle_rad = np.random.uniform(0, 2 * np.pi)
object_quat = compute_axis_rotation_quat(
axis="y", angle_rad=angle_rad
)
object_quat_scipy = np.roll(object_quat, 1) # [w, x, y, z]
rotation = R.from_quat(object_quat_scipy).as_matrix()
vertices = np.dot(mesh.vertices, rotation.T)
z1 = np.percentile(vertices[:, 1], 1)
z2 = np.percentile(vertices[:, 1], 99)
x1, x2, y1, y2 = compute_xy_bbox(vertices)
mesh_info[node]["pose"] = [x1, x2, y1, y2, z1, z2, *object_quat]
mesh_info[node]["area"] = max(1e-5, (x2 - x1) * (y2 - y1))
root = list(layout_info.tree.keys())[0]
queue = deque([((root, None), layout_info.tree.get(root, []))])
while queue:
(node, relation), children = queue.popleft()
if node not in object_mapping:
continue
if object_mapping[node] == Scene3DItemEnum.BACKGROUND.value:
position[node] = [0, 0, floor_margin, *bg_quat]
else:
x1, x2, y1, y2, z1, z2, qx, qy, qz, qw = mesh_info[node]["pose"]
if object_mapping[node] == Scene3DItemEnum.CONTEXT.value:
position[node] = [0, 0, -round(z1, 4), qx, qy, qz, qw]
parent_bbox_xy[node] = [x1, x2, y1, y2, z1, z2]
elif object_mapping[node] in [
Scene3DItemEnum.MANIPULATED_OBJS.value,
Scene3DItemEnum.DISTRACTOR_OBJS.value,
]:
parent_node = find_parent_node(node, layout_info.tree)
parent_pos = position[parent_node]
(
p_x1,
p_x2,
p_y1,
p_y2,
p_z1,
p_z2,
) = parent_bbox_xy[parent_node]
obj_dx = x2 - x1
obj_dy = y2 - y1
hull_path = mesh_info[parent_node].get("surface")
for _ in range(max_attempts):
node_x1 = random.uniform(p_x1, p_x2 - obj_dx)
node_y1 = random.uniform(p_y1, p_y2 - obj_dy)
node_box = [
node_x1,
node_x1 + obj_dx,
node_y1,
node_y1 + obj_dy,
]
if hull_path and not all_corners_inside(
hull_path, node_box
):
continue
# Make sure the manipulated object is reachable by robot.
if (
limit_reach_range
and object_mapping[node]
== Scene3DItemEnum.MANIPULATED_OBJS.value
):
cx = parent_pos[0] + node_box[0] + obj_dx / 2
cy = parent_pos[1] + node_box[2] + obj_dy / 2
cz = parent_pos[2] + p_z2 - z1
robot_pose = position[robot_node][:3]
if not check_reachable(
base_xyz=np.array(robot_pose),
reach_xyz=np.array([cx, cy, cz]),
):
continue
if not has_iou_conflict(
node_box, placed_boxes_map[parent_node]
):
z_offset = 0
break
else:
logger.warning(
f"Cannot place {node} on {parent_node} without overlap"
f" after {max_attempts} attempts, place beside {parent_node}."
)
for _ in range(max_attempts):
node_x1 = random.choice(
[
random.uniform(
p_x1 - obj_dx - beside_margin,
p_x1 - obj_dx,
),
random.uniform(p_x2, p_x2 + beside_margin),
]
)
node_y1 = random.choice(
[
random.uniform(
p_y1 - obj_dy - beside_margin,
p_y1 - obj_dy,
),
random.uniform(p_y2, p_y2 + beside_margin),
]
)
node_box = [
node_x1,
node_x1 + obj_dx,
node_y1,
node_y1 + obj_dy,
]
z_offset = -(parent_pos[2] + p_z2)
if not has_iou_conflict(
node_box, placed_boxes_map[parent_node]
):
break
placed_boxes_map[parent_node].append(node_box)
abs_cx = parent_pos[0] + node_box[0] + obj_dx / 2
abs_cy = parent_pos[1] + node_box[2] + obj_dy / 2
abs_cz = parent_pos[2] + p_z2 - z1 + z_offset
position[node] = [
round(v, 4)
for v in [abs_cx, abs_cy, abs_cz, qx, qy, qz, qw]
]
parent_bbox_xy[node] = [x1, x2, y1, y2, z1, z2]
sorted_children = sorted(
children, key=lambda x: -mesh_info[x[0]].get("area", 0)
)
for child, rel in sorted_children:
queue.append(((child, rel), layout_info.tree.get(child, [])))
layout_info.position = position
return layout_info
def compose_mesh_scene(
layout_info: LayoutInfo, out_scene_path: str, with_bg: bool = False
) -> None:
object_mapping = Scene3DItemEnum.object_mapping(layout_info.relation)
scene = trimesh.Scene()
for node in layout_info.assets:
if object_mapping[node] == Scene3DItemEnum.BACKGROUND.value:
mesh_path = f"{layout_info.assets[node]}/mesh_model.ply"
if not with_bg:
continue
else:
mesh_path = (
f"{layout_info.assets[node]}/mesh/{node.replace(' ', '_')}.obj"
)
mesh = trimesh.load(mesh_path)
offset = np.array(layout_info.position[node])[[0, 2, 1]]
mesh.vertices += offset
scene.add_geometry(mesh, node_name=node)
os.makedirs(os.path.dirname(out_scene_path), exist_ok=True)
scene.export(out_scene_path)
logger.info(f"Composed interactive 3D layout saved in {out_scene_path}")
return
def compute_pinhole_intrinsics(
image_w: int, image_h: int, fov_deg: float
) -> np.ndarray:
fov_rad = np.deg2rad(fov_deg)
fx = image_w / (2 * np.tan(fov_rad / 2))
fy = fx # assuming square pixels
cx = image_w / 2
cy = image_h / 2
K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
return K
|