File size: 15,828 Bytes
be0ecc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.

import os
import random
from collections import defaultdict, deque
from functools import wraps
from typing import Literal

import numpy as np
import torch
import trimesh
from matplotlib.path import Path
from pyquaternion import Quaternion
from scipy.spatial import ConvexHull
from scipy.spatial.transform import Rotation as R
from shapely.geometry import Polygon
from embodied_gen.utils.enum import LayoutInfo, Scene3DItemEnum
from embodied_gen.utils.log import logger

__all__ = [
    "bfs_placement",
    "with_seed",
    "matrix_to_pose",
    "pose_to_matrix",
    "quaternion_multiply",
    "check_reachable",
    "bfs_placement",
    "compose_mesh_scene",
    "compute_pinhole_intrinsics",
]


def matrix_to_pose(matrix: np.ndarray) -> list[float]:
    """Convert a 4x4 transformation matrix to a pose (x, y, z, qx, qy, qz, qw).

    Args:
        matrix (np.ndarray): 4x4 transformation matrix.

    Returns:
        List[float]: Pose as [x, y, z, qx, qy, qz, qw].
    """
    x, y, z = matrix[:3, 3]
    rot_mat = matrix[:3, :3]
    quat = R.from_matrix(rot_mat).as_quat()
    qx, qy, qz, qw = quat

    return [x, y, z, qx, qy, qz, qw]


def pose_to_matrix(pose: list[float]) -> np.ndarray:
    """Convert pose (x, y, z, qx, qy, qz, qw) to a 4x4 transformation matrix.

    Args:
        List[float]: Pose as [x, y, z, qx, qy, qz, qw].

    Returns:
        matrix (np.ndarray): 4x4 transformation matrix.
    """
    x, y, z, qx, qy, qz, qw = pose
    r = R.from_quat([qx, qy, qz, qw])
    matrix = np.eye(4)
    matrix[:3, :3] = r.as_matrix()
    matrix[:3, 3] = [x, y, z]

    return matrix


def compute_xy_bbox(
    vertices: np.ndarray, col_x: int = 0, col_y: int = 2
) -> list[float]:
    x_vals = vertices[:, col_x]
    y_vals = vertices[:, col_y]
    return x_vals.min(), x_vals.max(), y_vals.min(), y_vals.max()


def has_iou_conflict(
    new_box: list[float],
    placed_boxes: list[list[float]],
    iou_threshold: float = 0.0,
) -> bool:
    new_min_x, new_max_x, new_min_y, new_max_y = new_box
    for min_x, max_x, min_y, max_y in placed_boxes:
        ix1 = max(new_min_x, min_x)
        iy1 = max(new_min_y, min_y)
        ix2 = min(new_max_x, max_x)
        iy2 = min(new_max_y, max_y)
        inter_area = max(0, ix2 - ix1) * max(0, iy2 - iy1)
        if inter_area > iou_threshold:
            return True
    return False


def with_seed(seed_attr_name: str = "seed"):
    """A parameterized decorator that temporarily sets the random seed."""

    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            seed = kwargs.get(seed_attr_name, None)
            if seed is not None:
                py_state = random.getstate()
                np_state = np.random.get_state()
                torch_state = torch.get_rng_state()

                random.seed(seed)
                np.random.seed(seed)
                torch.manual_seed(seed)
                try:
                    result = func(*args, **kwargs)
                finally:
                    random.setstate(py_state)
                    np.random.set_state(np_state)
                    torch.set_rng_state(torch_state)
                return result
            else:
                return func(*args, **kwargs)

        return wrapper

    return decorator


def compute_convex_hull_path(
    vertices: np.ndarray,
    z_threshold: float = 0.05,
    interp_per_edge: int = 3,
    margin: float = -0.02,
) -> Path:
    top_vertices = vertices[
        vertices[:, 1] > vertices[:, 1].max() - z_threshold
    ]
    top_xy = top_vertices[:, [0, 2]]

    if len(top_xy) < 3:
        raise ValueError("Not enough points to form a convex hull")

    hull = ConvexHull(top_xy)
    hull_points = top_xy[hull.vertices]

    polygon = Polygon(hull_points)
    polygon = polygon.buffer(margin)
    hull_points = np.array(polygon.exterior.coords)

    dense_points = []
    for i in range(len(hull_points)):
        p1 = hull_points[i]
        p2 = hull_points[(i + 1) % len(hull_points)]
        for t in np.linspace(0, 1, interp_per_edge, endpoint=False):
            pt = (1 - t) * p1 + t * p2
            dense_points.append(pt)

    return Path(np.array(dense_points), closed=True)


def find_parent_node(node: str, tree: dict) -> str | None:
    for parent, children in tree.items():
        if any(child[0] == node for child in children):
            return parent
    return None


def all_corners_inside(hull: Path, box: list, threshold: int = 3) -> bool:
    x1, x2, y1, y2 = box
    corners = [[x1, y1], [x2, y1], [x1, y2], [x2, y2]]

    num_inside = sum(hull.contains_point(c) for c in corners)
    return num_inside >= threshold


def compute_axis_rotation_quat(
    axis: Literal["x", "y", "z"], angle_rad: float
) -> list[float]:
    if axis.lower() == 'x':
        q = Quaternion(axis=[1, 0, 0], angle=angle_rad)
    elif axis.lower() == 'y':
        q = Quaternion(axis=[0, 1, 0], angle=angle_rad)
    elif axis.lower() == 'z':
        q = Quaternion(axis=[0, 0, 1], angle=angle_rad)
    else:
        raise ValueError(f"Unsupported axis '{axis}', must be one of x, y, z")

    return [q.x, q.y, q.z, q.w]


def quaternion_multiply(
    init_quat: list[float], rotate_quat: list[float]
) -> list[float]:
    qx, qy, qz, qw = init_quat
    q1 = Quaternion(w=qw, x=qx, y=qy, z=qz)
    qx, qy, qz, qw = rotate_quat
    q2 = Quaternion(w=qw, x=qx, y=qy, z=qz)
    quat = q2 * q1

    return [quat.x, quat.y, quat.z, quat.w]


def check_reachable(
    base_xyz: np.ndarray,
    reach_xyz: np.ndarray,
    min_reach: float = 0.25,
    max_reach: float = 0.85,
) -> bool:
    """Check if the target point is within the reachable range."""
    distance = np.linalg.norm(reach_xyz - base_xyz)

    return min_reach < distance < max_reach


@with_seed("seed")
def bfs_placement(
    layout_info: LayoutInfo,
    floor_margin: float = 0,
    beside_margin: float = 0.1,
    max_attempts: int = 3000,
    rotate_objs: bool = True,
    rotate_bg: bool = True,
    limit_reach_range: bool = True,
    robot_dim: float = 0.12,
    seed: int = None,
) -> LayoutInfo:
    object_mapping = layout_info.objs_mapping
    position = {}  # node: [x, y, z, qx, qy, qz, qw]
    parent_bbox_xy = {}
    placed_boxes_map = defaultdict(list)
    mesh_info = defaultdict(dict)
    robot_node = layout_info.relation[Scene3DItemEnum.ROBOT.value]
    for node in object_mapping:
        if object_mapping[node] == Scene3DItemEnum.BACKGROUND.value:
            bg_quat = (
                compute_axis_rotation_quat(
                    axis="y",
                    angle_rad=np.random.uniform(0, 2 * np.pi),
                )
                if rotate_bg
                else [0, 0, 0, 1]
            )
            bg_quat = [round(q, 4) for q in bg_quat]
            continue

        mesh_path = (
            f"{layout_info.assets[node]}/mesh/{node.replace(' ', '_')}.obj"
        )
        mesh_info[node]["path"] = mesh_path
        mesh = trimesh.load(mesh_path)
        vertices = mesh.vertices
        z1 = np.percentile(vertices[:, 1], 1)
        z2 = np.percentile(vertices[:, 1], 99)

        if object_mapping[node] == Scene3DItemEnum.CONTEXT.value:
            object_quat = [0, 0, 0, 1]
            mesh_info[node]["surface"] = compute_convex_hull_path(vertices)
            # Put robot in the CONTEXT edge.
            x, y = random.choice(mesh_info[node]["surface"].vertices)
            theta = np.arctan2(y, x)
            quat_initial = Quaternion(axis=[0, 0, 1], angle=theta)
            quat_extra = Quaternion(axis=[0, 0, 1], angle=np.pi)
            quat = quat_extra * quat_initial
            _pose = [x, y, z2 - z1, quat.x, quat.y, quat.z, quat.w]
            position[robot_node] = [round(v, 4) for v in _pose]
            node_box = [
                x - robot_dim / 2,
                x + robot_dim / 2,
                y - robot_dim / 2,
                y + robot_dim / 2,
            ]
            placed_boxes_map[node].append(node_box)
        elif rotate_objs:
            # For manipulated and distractor objects, apply random rotation
            angle_rad = np.random.uniform(0, 2 * np.pi)
            object_quat = compute_axis_rotation_quat(
                axis="y", angle_rad=angle_rad
            )
            object_quat_scipy = np.roll(object_quat, 1)  # [w, x, y, z]
            rotation = R.from_quat(object_quat_scipy).as_matrix()
            vertices = np.dot(mesh.vertices, rotation.T)
            z1 = np.percentile(vertices[:, 1], 1)
            z2 = np.percentile(vertices[:, 1], 99)

        x1, x2, y1, y2 = compute_xy_bbox(vertices)
        mesh_info[node]["pose"] = [x1, x2, y1, y2, z1, z2, *object_quat]
        mesh_info[node]["area"] = max(1e-5, (x2 - x1) * (y2 - y1))

    root = list(layout_info.tree.keys())[0]
    queue = deque([((root, None), layout_info.tree.get(root, []))])
    while queue:
        (node, relation), children = queue.popleft()
        if node not in object_mapping:
            continue

        if object_mapping[node] == Scene3DItemEnum.BACKGROUND.value:
            position[node] = [0, 0, floor_margin, *bg_quat]
        else:
            x1, x2, y1, y2, z1, z2, qx, qy, qz, qw = mesh_info[node]["pose"]
            if object_mapping[node] == Scene3DItemEnum.CONTEXT.value:
                position[node] = [0, 0, -round(z1, 4), qx, qy, qz, qw]
                parent_bbox_xy[node] = [x1, x2, y1, y2, z1, z2]
            elif object_mapping[node] in [
                Scene3DItemEnum.MANIPULATED_OBJS.value,
                Scene3DItemEnum.DISTRACTOR_OBJS.value,
            ]:
                parent_node = find_parent_node(node, layout_info.tree)
                parent_pos = position[parent_node]
                (
                    p_x1,
                    p_x2,
                    p_y1,
                    p_y2,
                    p_z1,
                    p_z2,
                ) = parent_bbox_xy[parent_node]

                obj_dx = x2 - x1
                obj_dy = y2 - y1
                hull_path = mesh_info[parent_node].get("surface")
                for _ in range(max_attempts):
                    node_x1 = random.uniform(p_x1, p_x2 - obj_dx)
                    node_y1 = random.uniform(p_y1, p_y2 - obj_dy)
                    node_box = [
                        node_x1,
                        node_x1 + obj_dx,
                        node_y1,
                        node_y1 + obj_dy,
                    ]
                    if hull_path and not all_corners_inside(
                        hull_path, node_box
                    ):
                        continue
                    # Make sure the manipulated object is reachable by robot.
                    if (
                        limit_reach_range
                        and object_mapping[node]
                        == Scene3DItemEnum.MANIPULATED_OBJS.value
                    ):
                        cx = parent_pos[0] + node_box[0] + obj_dx / 2
                        cy = parent_pos[1] + node_box[2] + obj_dy / 2
                        cz = parent_pos[2] + p_z2 - z1
                        robot_pose = position[robot_node][:3]
                        if not check_reachable(
                            base_xyz=np.array(robot_pose),
                            reach_xyz=np.array([cx, cy, cz]),
                        ):
                            continue

                    if not has_iou_conflict(
                        node_box, placed_boxes_map[parent_node]
                    ):
                        z_offset = 0
                        break
                else:
                    logger.warning(
                        f"Cannot place {node} on {parent_node} without overlap"
                        f" after {max_attempts} attempts, place beside {parent_node}."
                    )
                    for _ in range(max_attempts):
                        node_x1 = random.choice(
                            [
                                random.uniform(
                                    p_x1 - obj_dx - beside_margin,
                                    p_x1 - obj_dx,
                                ),
                                random.uniform(p_x2, p_x2 + beside_margin),
                            ]
                        )
                        node_y1 = random.choice(
                            [
                                random.uniform(
                                    p_y1 - obj_dy - beside_margin,
                                    p_y1 - obj_dy,
                                ),
                                random.uniform(p_y2, p_y2 + beside_margin),
                            ]
                        )
                        node_box = [
                            node_x1,
                            node_x1 + obj_dx,
                            node_y1,
                            node_y1 + obj_dy,
                        ]
                        z_offset = -(parent_pos[2] + p_z2)
                        if not has_iou_conflict(
                            node_box, placed_boxes_map[parent_node]
                        ):
                            break

                placed_boxes_map[parent_node].append(node_box)

                abs_cx = parent_pos[0] + node_box[0] + obj_dx / 2
                abs_cy = parent_pos[1] + node_box[2] + obj_dy / 2
                abs_cz = parent_pos[2] + p_z2 - z1 + z_offset
                position[node] = [
                    round(v, 4)
                    for v in [abs_cx, abs_cy, abs_cz, qx, qy, qz, qw]
                ]
                parent_bbox_xy[node] = [x1, x2, y1, y2, z1, z2]

        sorted_children = sorted(
            children, key=lambda x: -mesh_info[x[0]].get("area", 0)
        )
        for child, rel in sorted_children:
            queue.append(((child, rel), layout_info.tree.get(child, [])))

    layout_info.position = position

    return layout_info


def compose_mesh_scene(
    layout_info: LayoutInfo, out_scene_path: str, with_bg: bool = False
) -> None:
    object_mapping = Scene3DItemEnum.object_mapping(layout_info.relation)
    scene = trimesh.Scene()
    for node in layout_info.assets:
        if object_mapping[node] == Scene3DItemEnum.BACKGROUND.value:
            mesh_path = f"{layout_info.assets[node]}/mesh_model.ply"
            if not with_bg:
                continue
        else:
            mesh_path = (
                f"{layout_info.assets[node]}/mesh/{node.replace(' ', '_')}.obj"
            )

        mesh = trimesh.load(mesh_path)
        offset = np.array(layout_info.position[node])[[0, 2, 1]]
        mesh.vertices += offset
        scene.add_geometry(mesh, node_name=node)

    os.makedirs(os.path.dirname(out_scene_path), exist_ok=True)
    scene.export(out_scene_path)
    logger.info(f"Composed interactive 3D layout saved in {out_scene_path}")

    return


def compute_pinhole_intrinsics(
    image_w: int, image_h: int, fov_deg: float
) -> np.ndarray:
    fov_rad = np.deg2rad(fov_deg)
    fx = image_w / (2 * np.tan(fov_rad / 2))
    fy = fx  # assuming square pixels
    cx = image_w / 2
    cy = image_h / 2
    K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])

    return K