File size: 4,980 Bytes
be0ecc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.


from embodied_gen.utils.monkey_patches import monkey_patch_maniskill

monkey_patch_maniskill()
import json
from collections import defaultdict
from dataclasses import dataclass
from typing import Literal

import gymnasium as gym
import numpy as np
import torch
import tyro
from mani_skill.utils.wrappers import RecordEpisode
from tqdm import tqdm
import embodied_gen.envs.pick_embodiedgen
from embodied_gen.utils.enum import LayoutInfo, Scene3DItemEnum
from embodied_gen.utils.log import logger
from embodied_gen.utils.simulation import FrankaPandaGrasper


@dataclass
class ParallelSimConfig:
    """CLI parameters for Parallel Sapien simulation."""

    # Environment configuration
    layout_file: str
    """Path to the layout JSON file"""
    output_dir: str
    """Directory to save recorded videos"""
    gym_env_name: str = "PickEmbodiedGen-v1"
    """Name of the Gym environment to use"""
    num_envs: int = 4
    """Number of parallel environments"""
    render_mode: Literal["rgb_array", "hybrid"] = "hybrid"
    """Rendering mode: rgb_array or hybrid"""
    enable_shadow: bool = True
    """Whether to enable shadows in rendering"""
    control_mode: str = "pd_joint_pos"
    """Control mode for the agent"""

    # Recording configuration
    max_steps_per_video: int = 1000
    """Maximum steps to record per video"""
    save_trajectory: bool = False
    """Whether to save trajectory data"""

    # Simulation parameters
    seed: int = 0
    """Random seed for environment reset"""
    warmup_steps: int = 50
    """Number of warmup steps before action computation"""
    reach_target_only: bool = True
    """Whether to only reach target without full action"""


def entrypoint(**kwargs):
    if kwargs is None or len(kwargs) == 0:
        cfg = tyro.cli(ParallelSimConfig)
    else:
        cfg = ParallelSimConfig(**kwargs)

    env = gym.make(
        cfg.gym_env_name,
        num_envs=cfg.num_envs,
        render_mode=cfg.render_mode,
        enable_shadow=cfg.enable_shadow,
        layout_file=cfg.layout_file,
        control_mode=cfg.control_mode,
    )
    env = RecordEpisode(
        env,
        cfg.output_dir,
        max_steps_per_video=cfg.max_steps_per_video,
        save_trajectory=cfg.save_trajectory,
    )
    env.reset(seed=cfg.seed)

    default_action = env.unwrapped.agent.init_qpos[:, :8]
    for _ in tqdm(range(cfg.warmup_steps), desc="SIM Warmup"):
        # action = env.action_space.sample() # Random action
        obs, reward, terminated, truncated, info = env.step(default_action)

    grasper = FrankaPandaGrasper(
        env.unwrapped.agent,
        env.unwrapped.sim_config.control_freq,
    )

    layout_data = LayoutInfo.from_dict(json.load(open(cfg.layout_file, "r")))
    actions = defaultdict(list)
    # Plan Grasp reach pose for each manipulated object in each env.
    for env_idx in range(env.num_envs):
        actors = env.unwrapped.env_actors[f"env{env_idx}"]
        for node in layout_data.relation[
            Scene3DItemEnum.MANIPULATED_OBJS.value
        ]:
            action = grasper.compute_grasp_action(
                actor=actors[node]._objs[0],
                reach_target_only=True,
                env_idx=env_idx,
            )
            actions[node].append(action)

    # Excute the planned actions for each manipulated object in each env.
    for node in actions:
        max_env_steps = 0
        for env_idx in range(env.num_envs):
            if actions[node][env_idx] is None:
                continue
            max_env_steps = max(max_env_steps, len(actions[node][env_idx]))

        action_tensor = np.ones(
            (max_env_steps, env.num_envs, env.action_space.shape[-1])
        )
        action_tensor *= default_action[None, ...]
        for env_idx in range(env.num_envs):
            action = actions[node][env_idx]
            if action is None:
                continue
            action_tensor[: len(action), env_idx, :] = action

        for step in tqdm(range(max_env_steps), desc=f"Grasping: {node}"):
            action = torch.Tensor(action_tensor[step]).to(env.unwrapped.device)
            env.unwrapped.agent.set_action(action)
            obs, reward, terminated, truncated, info = env.step(action)

    env.close()
    logger.info(f"Results saved in {cfg.output_dir}")


if __name__ == "__main__":
    entrypoint()