File size: 13,556 Bytes
be0ecc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.

import json
import os
from copy import deepcopy

import numpy as np
import sapien
import torch
import torchvision.transforms as transforms
from mani_skill.envs.sapien_env import BaseEnv
from mani_skill.sensors.camera import CameraConfig
from mani_skill.utils import sapien_utils
from mani_skill.utils.building import actors
from mani_skill.utils.registration import register_env
from mani_skill.utils.structs.actor import Actor
from mani_skill.utils.structs.pose import Pose
from mani_skill.utils.structs.types import (
    GPUMemoryConfig,
    SceneConfig,
    SimConfig,
)
from mani_skill.utils.visualization.misc import tile_images
from tqdm import tqdm
from embodied_gen.models.gs_model import GaussianOperator
from embodied_gen.utils.enum import LayoutInfo, Scene3DItemEnum
from embodied_gen.utils.geometry import bfs_placement, quaternion_multiply
from embodied_gen.utils.log import logger
from embodied_gen.utils.process_media import alpha_blend_rgba
from embodied_gen.utils.simulation import (
    SIM_COORD_ALIGN,
    load_assets_from_layout_file,
)

__all__ = ["PickEmbodiedGen"]


@register_env("PickEmbodiedGen-v1", max_episode_steps=100)
class PickEmbodiedGen(BaseEnv):
    SUPPORTED_ROBOTS = ["panda", "panda_wristcam", "fetch"]
    goal_thresh = 0.0

    def __init__(
        self,
        *args,
        robot_uids: str | list[str] = "panda",
        robot_init_qpos_noise: float = 0.02,
        num_envs: int = 1,
        reconfiguration_freq: int = None,
        **kwargs,
    ):
        self.robot_init_qpos_noise = robot_init_qpos_noise
        if reconfiguration_freq is None:
            if num_envs == 1:
                reconfiguration_freq = 1
            else:
                reconfiguration_freq = 0

        # Init params from kwargs.
        layout_file = kwargs.pop("layout_file", None)
        replace_objs = kwargs.pop("replace_objs", True)
        self.enable_grasp = kwargs.pop("enable_grasp", False)
        self.init_quat = kwargs.pop("init_quat", [0.7071, 0, 0, 0.7071])
        # Add small offset in z-axis to avoid collision.
        self.objs_z_offset = kwargs.pop("objs_z_offset", 0.002)
        self.robot_z_offset = kwargs.pop("robot_z_offset", 0.002)

        self.layouts = self.init_env_layouts(
            layout_file, num_envs, replace_objs
        )
        self.robot_pose = self.compute_robot_init_pose(
            self.layouts, num_envs, self.robot_z_offset
        )
        self.env_actors = dict()
        self.image_transform = transforms.PILToTensor()

        super().__init__(
            *args,
            robot_uids=robot_uids,
            reconfiguration_freq=reconfiguration_freq,
            num_envs=num_envs,
            **kwargs,
        )

        self.bg_images = dict()
        if self.render_mode == "hybrid":
            self.bg_images = self.render_gs3d_images(
                self.layouts, num_envs, self.init_quat
            )

    @staticmethod
    def init_env_layouts(
        layout_file: str, num_envs: int, replace_objs: bool
    ) -> list[LayoutInfo]:
        layout = LayoutInfo.from_dict(json.load(open(layout_file, "r")))
        layouts = []
        for env_idx in range(num_envs):
            if replace_objs and env_idx > 0:
                layout = bfs_placement(deepcopy(layout))
            layouts.append(layout)

        return layouts

    @staticmethod
    def compute_robot_init_pose(
        layouts: list[LayoutInfo], num_envs: int, z_offset: float = 0.0
    ) -> list[list[float]]:
        robot_pose = []
        for env_idx in range(num_envs):
            layout = layouts[env_idx]
            robot_node = layout.relation[Scene3DItemEnum.ROBOT.value]
            x, y, z, qx, qy, qz, qw = layout.position[robot_node]
            robot_pose.append([x, y, z + z_offset, qw, qx, qy, qz])

        return robot_pose

    @property
    def _default_sim_config(self):
        return SimConfig(
            scene_config=SceneConfig(
                solver_position_iterations=30,
                # contact_offset=0.04,
                # rest_offset=0.001,
            ),
            # sim_freq=200,
            control_freq=50,
            gpu_memory_config=GPUMemoryConfig(
                max_rigid_contact_count=2**20, max_rigid_patch_count=2**19
            ),
        )

    @property
    def _default_sensor_configs(self):
        pose = sapien_utils.look_at(eye=[0.3, 0, 0.6], target=[-0.1, 0, 0.1])

        return [
            CameraConfig("base_camera", pose, 128, 128, np.pi / 2, 0.01, 100)
        ]

    @property
    def _default_human_render_camera_configs(self):
        pose = sapien_utils.look_at(
            eye=[0.9, 0.0, 1.1], target=[0.0, 0.0, 0.9]
        )

        return CameraConfig(
            "render_camera", pose, 256, 256, np.deg2rad(75), 0.01, 100
        )

    def _load_agent(self, options: dict):
        super()._load_agent(options, sapien.Pose(p=[-10, 0, 10]))

    def _load_scene(self, options: dict):
        all_objects = []
        logger.info(f"Loading assets and decomposition mesh collisions...")
        for env_idx in range(self.num_envs):
            env_actors = load_assets_from_layout_file(
                self.scene,
                self.layouts[env_idx],
                z_offset=self.objs_z_offset,
                init_quat=self.init_quat,
                env_idx=env_idx,
            )
            self.env_actors[f"env{env_idx}"] = env_actors
            all_objects.extend(env_actors.values())

        self.obj = all_objects[-1]
        for obj in all_objects:
            self.remove_from_state_dict_registry(obj)

        self.all_objects = Actor.merge(all_objects, name="all_objects")
        self.add_to_state_dict_registry(self.all_objects)

        self.goal_site = actors.build_sphere(
            self.scene,
            radius=self.goal_thresh,
            color=[0, 1, 0, 0],
            name="goal_site",
            body_type="kinematic",
            add_collision=False,
            initial_pose=sapien.Pose(),
        )
        self._hidden_objects.append(self.goal_site)

    def _initialize_episode(self, env_idx: torch.Tensor, options: dict):
        with torch.device(self.device):
            b = len(env_idx)
            goal_xyz = torch.zeros((b, 3))
            goal_xyz[:, :2] = torch.rand((b, 2)) * 0.2 - 0.1
            self.goal_site.set_pose(Pose.create_from_pq(goal_xyz))

            qpos = np.array(
                [
                    0.0,
                    np.pi / 8,
                    0,
                    -np.pi * 3 / 8,
                    0,
                    np.pi * 3 / 4,
                    np.pi / 4,
                    0.04,
                    0.04,
                ]
            )
            qpos = (
                np.random.normal(
                    0, self.robot_init_qpos_noise, (self.num_envs, len(qpos))
                )
                + qpos
            )
            qpos[:, -2:] = 0.04
            self.agent.robot.set_root_pose(np.array(self.robot_pose))
            self.agent.reset(qpos)
            self.agent.init_qpos = qpos
            self.agent.controller.controllers["gripper"].reset()

    def render_gs3d_images(
        self, layouts: list[LayoutInfo], num_envs: int, init_quat: list[float]
    ) -> dict[str, np.ndarray]:
        sim_coord_align = (
            torch.tensor(SIM_COORD_ALIGN).to(torch.float32).to(self.device)
        )
        cameras = self.scene.sensors.copy()
        cameras.update(self.scene.human_render_cameras)

        bg_node = layouts[0].relation[Scene3DItemEnum.BACKGROUND.value]
        gs_path = os.path.join(layouts[0].assets[bg_node], "gs_model.ply")
        raw_gs: GaussianOperator = GaussianOperator.load_from_ply(gs_path)
        bg_images = dict()
        for env_idx in tqdm(range(num_envs), desc="Pre-rendering Background"):
            layout = layouts[env_idx]
            x, y, z, qx, qy, qz, qw = layout.position[bg_node]
            qx, qy, qz, qw = quaternion_multiply([qx, qy, qz, qw], init_quat)
            init_pose = torch.tensor([x, y, z, qx, qy, qz, qw])
            gs_model = raw_gs.get_gaussians(instance_pose=init_pose)
            for key in cameras:
                camera = cameras[key]
                Ks = camera.camera.get_intrinsic_matrix()  # (n_env, 3, 3)
                c2w = camera.camera.get_model_matrix()  # (n_env, 4, 4)
                result = gs_model.render(
                    c2w[env_idx] @ sim_coord_align,
                    Ks[env_idx],
                    image_width=camera.config.width,
                    image_height=camera.config.height,
                )
                bg_images[f"{key}-env{env_idx}"] = result.rgb[..., ::-1]

        return bg_images

    def render(self):
        if self.render_mode is None:
            raise RuntimeError("render_mode is not set.")
        if self.render_mode == "human":
            return self.render_human()
        elif self.render_mode == "rgb_array":
            res = self.render_rgb_array()
            return res
        elif self.render_mode == "sensors":
            res = self.render_sensors()
            return res
        elif self.render_mode == "all":
            return self.render_all()
        elif self.render_mode == "hybrid":
            return self.hybrid_render()
        else:
            raise NotImplementedError(
                f"Unsupported render mode {self.render_mode}."
            )

    def render_rgb_array(
        self, camera_name: str = None, return_alpha: bool = False
    ):
        for obj in self._hidden_objects:
            obj.show_visual()
        self.scene.update_render(
            update_sensors=False, update_human_render_cameras=True
        )
        images = []
        render_images = self.scene.get_human_render_camera_images(
            camera_name, return_alpha
        )
        for image in render_images.values():
            images.append(image)
        if len(images) == 0:
            return None
        if len(images) == 1:
            return images[0]
        for obj in self._hidden_objects:
            obj.hide_visual()
        return tile_images(images)

    def render_sensors(self):
        images = []
        sensor_images = self.get_sensor_images()
        for image in sensor_images.values():
            for img in image.values():
                images.append(img)
        return tile_images(images)

    def hybrid_render(self):
        fg_images = self.render_rgb_array(
            return_alpha=True
        )  # (n_env, h, w, 3)
        images = []
        for key in self.bg_images:
            if "render_camera" not in key:
                continue
            env_idx = int(key.split("-env")[-1])
            rgba = alpha_blend_rgba(
                fg_images[env_idx].cpu().numpy(), self.bg_images[key]
            )
            images.append(self.image_transform(rgba))

        images = torch.stack(images, dim=0)
        images = images.permute(0, 2, 3, 1)

        return images[..., :3]

    def evaluate(self):
        obj_to_goal_pos = (
            self.obj.pose.p
        )  # self.goal_site.pose.p - self.obj.pose.p
        is_obj_placed = (
            torch.linalg.norm(obj_to_goal_pos, axis=1) <= self.goal_thresh
        )
        is_grasped = self.agent.is_grasping(self.obj)
        is_robot_static = self.agent.is_static(0.2)

        return dict(
            is_grasped=is_grasped,
            obj_to_goal_pos=obj_to_goal_pos,
            is_obj_placed=is_obj_placed,
            is_robot_static=is_robot_static,
            is_grasping=self.agent.is_grasping(self.obj),
            success=torch.logical_and(is_obj_placed, is_robot_static),
        )

    def _get_obs_extra(self, info: dict):

        return dict()

    def compute_dense_reward(self, obs: any, action: torch.Tensor, info: dict):
        tcp_to_obj_dist = torch.linalg.norm(
            self.obj.pose.p - self.agent.tcp.pose.p, axis=1
        )
        reaching_reward = 1 - torch.tanh(5 * tcp_to_obj_dist)
        reward = reaching_reward

        is_grasped = info["is_grasped"]
        reward += is_grasped

        # obj_to_goal_dist = torch.linalg.norm(
        #     self.goal_site.pose.p - self.obj.pose.p, axis=1
        # )
        obj_to_goal_dist = torch.linalg.norm(
            self.obj.pose.p - self.obj.pose.p, axis=1
        )
        place_reward = 1 - torch.tanh(5 * obj_to_goal_dist)
        reward += place_reward * is_grasped

        reward += info["is_obj_placed"] * is_grasped

        static_reward = 1 - torch.tanh(
            5
            * torch.linalg.norm(self.agent.robot.get_qvel()[..., :-2], axis=1)
        )
        reward += static_reward * info["is_obj_placed"] * is_grasped

        reward[info["success"]] = 6
        return reward

    def compute_normalized_dense_reward(
        self, obs: any, action: torch.Tensor, info: dict
    ):
        return self.compute_dense_reward(obs=obs, action=action, info=info) / 6