Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,556 Bytes
be0ecc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import json
import os
from copy import deepcopy
import numpy as np
import sapien
import torch
import torchvision.transforms as transforms
from mani_skill.envs.sapien_env import BaseEnv
from mani_skill.sensors.camera import CameraConfig
from mani_skill.utils import sapien_utils
from mani_skill.utils.building import actors
from mani_skill.utils.registration import register_env
from mani_skill.utils.structs.actor import Actor
from mani_skill.utils.structs.pose import Pose
from mani_skill.utils.structs.types import (
GPUMemoryConfig,
SceneConfig,
SimConfig,
)
from mani_skill.utils.visualization.misc import tile_images
from tqdm import tqdm
from embodied_gen.models.gs_model import GaussianOperator
from embodied_gen.utils.enum import LayoutInfo, Scene3DItemEnum
from embodied_gen.utils.geometry import bfs_placement, quaternion_multiply
from embodied_gen.utils.log import logger
from embodied_gen.utils.process_media import alpha_blend_rgba
from embodied_gen.utils.simulation import (
SIM_COORD_ALIGN,
load_assets_from_layout_file,
)
__all__ = ["PickEmbodiedGen"]
@register_env("PickEmbodiedGen-v1", max_episode_steps=100)
class PickEmbodiedGen(BaseEnv):
SUPPORTED_ROBOTS = ["panda", "panda_wristcam", "fetch"]
goal_thresh = 0.0
def __init__(
self,
*args,
robot_uids: str | list[str] = "panda",
robot_init_qpos_noise: float = 0.02,
num_envs: int = 1,
reconfiguration_freq: int = None,
**kwargs,
):
self.robot_init_qpos_noise = robot_init_qpos_noise
if reconfiguration_freq is None:
if num_envs == 1:
reconfiguration_freq = 1
else:
reconfiguration_freq = 0
# Init params from kwargs.
layout_file = kwargs.pop("layout_file", None)
replace_objs = kwargs.pop("replace_objs", True)
self.enable_grasp = kwargs.pop("enable_grasp", False)
self.init_quat = kwargs.pop("init_quat", [0.7071, 0, 0, 0.7071])
# Add small offset in z-axis to avoid collision.
self.objs_z_offset = kwargs.pop("objs_z_offset", 0.002)
self.robot_z_offset = kwargs.pop("robot_z_offset", 0.002)
self.layouts = self.init_env_layouts(
layout_file, num_envs, replace_objs
)
self.robot_pose = self.compute_robot_init_pose(
self.layouts, num_envs, self.robot_z_offset
)
self.env_actors = dict()
self.image_transform = transforms.PILToTensor()
super().__init__(
*args,
robot_uids=robot_uids,
reconfiguration_freq=reconfiguration_freq,
num_envs=num_envs,
**kwargs,
)
self.bg_images = dict()
if self.render_mode == "hybrid":
self.bg_images = self.render_gs3d_images(
self.layouts, num_envs, self.init_quat
)
@staticmethod
def init_env_layouts(
layout_file: str, num_envs: int, replace_objs: bool
) -> list[LayoutInfo]:
layout = LayoutInfo.from_dict(json.load(open(layout_file, "r")))
layouts = []
for env_idx in range(num_envs):
if replace_objs and env_idx > 0:
layout = bfs_placement(deepcopy(layout))
layouts.append(layout)
return layouts
@staticmethod
def compute_robot_init_pose(
layouts: list[LayoutInfo], num_envs: int, z_offset: float = 0.0
) -> list[list[float]]:
robot_pose = []
for env_idx in range(num_envs):
layout = layouts[env_idx]
robot_node = layout.relation[Scene3DItemEnum.ROBOT.value]
x, y, z, qx, qy, qz, qw = layout.position[robot_node]
robot_pose.append([x, y, z + z_offset, qw, qx, qy, qz])
return robot_pose
@property
def _default_sim_config(self):
return SimConfig(
scene_config=SceneConfig(
solver_position_iterations=30,
# contact_offset=0.04,
# rest_offset=0.001,
),
# sim_freq=200,
control_freq=50,
gpu_memory_config=GPUMemoryConfig(
max_rigid_contact_count=2**20, max_rigid_patch_count=2**19
),
)
@property
def _default_sensor_configs(self):
pose = sapien_utils.look_at(eye=[0.3, 0, 0.6], target=[-0.1, 0, 0.1])
return [
CameraConfig("base_camera", pose, 128, 128, np.pi / 2, 0.01, 100)
]
@property
def _default_human_render_camera_configs(self):
pose = sapien_utils.look_at(
eye=[0.9, 0.0, 1.1], target=[0.0, 0.0, 0.9]
)
return CameraConfig(
"render_camera", pose, 256, 256, np.deg2rad(75), 0.01, 100
)
def _load_agent(self, options: dict):
super()._load_agent(options, sapien.Pose(p=[-10, 0, 10]))
def _load_scene(self, options: dict):
all_objects = []
logger.info(f"Loading assets and decomposition mesh collisions...")
for env_idx in range(self.num_envs):
env_actors = load_assets_from_layout_file(
self.scene,
self.layouts[env_idx],
z_offset=self.objs_z_offset,
init_quat=self.init_quat,
env_idx=env_idx,
)
self.env_actors[f"env{env_idx}"] = env_actors
all_objects.extend(env_actors.values())
self.obj = all_objects[-1]
for obj in all_objects:
self.remove_from_state_dict_registry(obj)
self.all_objects = Actor.merge(all_objects, name="all_objects")
self.add_to_state_dict_registry(self.all_objects)
self.goal_site = actors.build_sphere(
self.scene,
radius=self.goal_thresh,
color=[0, 1, 0, 0],
name="goal_site",
body_type="kinematic",
add_collision=False,
initial_pose=sapien.Pose(),
)
self._hidden_objects.append(self.goal_site)
def _initialize_episode(self, env_idx: torch.Tensor, options: dict):
with torch.device(self.device):
b = len(env_idx)
goal_xyz = torch.zeros((b, 3))
goal_xyz[:, :2] = torch.rand((b, 2)) * 0.2 - 0.1
self.goal_site.set_pose(Pose.create_from_pq(goal_xyz))
qpos = np.array(
[
0.0,
np.pi / 8,
0,
-np.pi * 3 / 8,
0,
np.pi * 3 / 4,
np.pi / 4,
0.04,
0.04,
]
)
qpos = (
np.random.normal(
0, self.robot_init_qpos_noise, (self.num_envs, len(qpos))
)
+ qpos
)
qpos[:, -2:] = 0.04
self.agent.robot.set_root_pose(np.array(self.robot_pose))
self.agent.reset(qpos)
self.agent.init_qpos = qpos
self.agent.controller.controllers["gripper"].reset()
def render_gs3d_images(
self, layouts: list[LayoutInfo], num_envs: int, init_quat: list[float]
) -> dict[str, np.ndarray]:
sim_coord_align = (
torch.tensor(SIM_COORD_ALIGN).to(torch.float32).to(self.device)
)
cameras = self.scene.sensors.copy()
cameras.update(self.scene.human_render_cameras)
bg_node = layouts[0].relation[Scene3DItemEnum.BACKGROUND.value]
gs_path = os.path.join(layouts[0].assets[bg_node], "gs_model.ply")
raw_gs: GaussianOperator = GaussianOperator.load_from_ply(gs_path)
bg_images = dict()
for env_idx in tqdm(range(num_envs), desc="Pre-rendering Background"):
layout = layouts[env_idx]
x, y, z, qx, qy, qz, qw = layout.position[bg_node]
qx, qy, qz, qw = quaternion_multiply([qx, qy, qz, qw], init_quat)
init_pose = torch.tensor([x, y, z, qx, qy, qz, qw])
gs_model = raw_gs.get_gaussians(instance_pose=init_pose)
for key in cameras:
camera = cameras[key]
Ks = camera.camera.get_intrinsic_matrix() # (n_env, 3, 3)
c2w = camera.camera.get_model_matrix() # (n_env, 4, 4)
result = gs_model.render(
c2w[env_idx] @ sim_coord_align,
Ks[env_idx],
image_width=camera.config.width,
image_height=camera.config.height,
)
bg_images[f"{key}-env{env_idx}"] = result.rgb[..., ::-1]
return bg_images
def render(self):
if self.render_mode is None:
raise RuntimeError("render_mode is not set.")
if self.render_mode == "human":
return self.render_human()
elif self.render_mode == "rgb_array":
res = self.render_rgb_array()
return res
elif self.render_mode == "sensors":
res = self.render_sensors()
return res
elif self.render_mode == "all":
return self.render_all()
elif self.render_mode == "hybrid":
return self.hybrid_render()
else:
raise NotImplementedError(
f"Unsupported render mode {self.render_mode}."
)
def render_rgb_array(
self, camera_name: str = None, return_alpha: bool = False
):
for obj in self._hidden_objects:
obj.show_visual()
self.scene.update_render(
update_sensors=False, update_human_render_cameras=True
)
images = []
render_images = self.scene.get_human_render_camera_images(
camera_name, return_alpha
)
for image in render_images.values():
images.append(image)
if len(images) == 0:
return None
if len(images) == 1:
return images[0]
for obj in self._hidden_objects:
obj.hide_visual()
return tile_images(images)
def render_sensors(self):
images = []
sensor_images = self.get_sensor_images()
for image in sensor_images.values():
for img in image.values():
images.append(img)
return tile_images(images)
def hybrid_render(self):
fg_images = self.render_rgb_array(
return_alpha=True
) # (n_env, h, w, 3)
images = []
for key in self.bg_images:
if "render_camera" not in key:
continue
env_idx = int(key.split("-env")[-1])
rgba = alpha_blend_rgba(
fg_images[env_idx].cpu().numpy(), self.bg_images[key]
)
images.append(self.image_transform(rgba))
images = torch.stack(images, dim=0)
images = images.permute(0, 2, 3, 1)
return images[..., :3]
def evaluate(self):
obj_to_goal_pos = (
self.obj.pose.p
) # self.goal_site.pose.p - self.obj.pose.p
is_obj_placed = (
torch.linalg.norm(obj_to_goal_pos, axis=1) <= self.goal_thresh
)
is_grasped = self.agent.is_grasping(self.obj)
is_robot_static = self.agent.is_static(0.2)
return dict(
is_grasped=is_grasped,
obj_to_goal_pos=obj_to_goal_pos,
is_obj_placed=is_obj_placed,
is_robot_static=is_robot_static,
is_grasping=self.agent.is_grasping(self.obj),
success=torch.logical_and(is_obj_placed, is_robot_static),
)
def _get_obs_extra(self, info: dict):
return dict()
def compute_dense_reward(self, obs: any, action: torch.Tensor, info: dict):
tcp_to_obj_dist = torch.linalg.norm(
self.obj.pose.p - self.agent.tcp.pose.p, axis=1
)
reaching_reward = 1 - torch.tanh(5 * tcp_to_obj_dist)
reward = reaching_reward
is_grasped = info["is_grasped"]
reward += is_grasped
# obj_to_goal_dist = torch.linalg.norm(
# self.goal_site.pose.p - self.obj.pose.p, axis=1
# )
obj_to_goal_dist = torch.linalg.norm(
self.obj.pose.p - self.obj.pose.p, axis=1
)
place_reward = 1 - torch.tanh(5 * obj_to_goal_dist)
reward += place_reward * is_grasped
reward += info["is_obj_placed"] * is_grasped
static_reward = 1 - torch.tanh(
5
* torch.linalg.norm(self.agent.robot.get_qvel()[..., :-2], axis=1)
)
reward += static_reward * info["is_obj_placed"] * is_grasped
reward[info["success"]] = 6
return reward
def compute_normalized_dense_reward(
self, obs: any, action: torch.Tensor, info: dict
):
return self.compute_dense_reward(obs=obs, action=action, info=info) / 6
|