File size: 5,215 Bytes
be0ecc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e9a83d
be0ecc3
 
 
 
 
 
 
 
 
 
 
 
9e9a83d
 
 
 
 
be0ecc3
 
 
 
 
 
 
 
9e9a83d
 
 
 
 
 
 
 
be0ecc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e9a83d
be0ecc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e9a83d
be0ecc3
 
 
 
 
 
 
 
 
9e9a83d
 
 
be0ecc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e9a83d
be0ecc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e9a83d
be0ecc3
 
 
 
 
 
 
 
 
 
9e9a83d
be0ecc3
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.

import logging
import multiprocessing as mp
import os

import coacd
import numpy as np
import trimesh

logger = logging.getLogger(__name__)

__all__ = [
    "decompose_convex_coacd",
    "decompose_convex_mesh",
    "decompose_convex_process",
]


def decompose_convex_coacd(
    filename: str,
    outfile: str,
    params: dict,
    verbose: bool = False,
    auto_scale: bool = True,
) -> None:
    coacd.set_log_level("info" if verbose else "warn")

    mesh = trimesh.load(filename, force="mesh")
    mesh = coacd.Mesh(mesh.vertices, mesh.faces)

    result = coacd.run_coacd(mesh, **params)
    combined = sum([trimesh.Trimesh(*m) for m in result])

    # Compute collision_scale because convex decomposition usually makes the mesh larger.
    if auto_scale:
        convex_mesh_shape = np.ptp(combined.vertices, axis=0)
        visual_mesh_shape = np.ptp(mesh.vertices, axis=0)
        rescale = visual_mesh_shape / convex_mesh_shape
        combined.vertices *= rescale

    combined.export(outfile)


def decompose_convex_mesh(
    filename: str,
    outfile: str,
    threshold: float = 0.05,
    max_convex_hull: int = -1,
    preprocess_mode: str = "auto",
    preprocess_resolution: int = 30,
    resolution: int = 2000,
    mcts_nodes: int = 20,
    mcts_iterations: int = 150,
    mcts_max_depth: int = 3,
    pca: bool = False,
    merge: bool = True,
    seed: int = 0,
    auto_scale: bool = True,
    verbose: bool = False,
) -> str:
    """Decompose a mesh into convex parts using the CoACD algorithm."""
    coacd.set_log_level("info" if verbose else "warn")

    if os.path.exists(outfile):
        logger.warning(f"Output file {outfile} already exists, removing it.")
        os.remove(outfile)

    params = dict(
        threshold=threshold,
        max_convex_hull=max_convex_hull,
        preprocess_mode=preprocess_mode,
        preprocess_resolution=preprocess_resolution,
        resolution=resolution,
        mcts_nodes=mcts_nodes,
        mcts_iterations=mcts_iterations,
        mcts_max_depth=mcts_max_depth,
        pca=pca,
        merge=merge,
        seed=seed,
    )

    try:
        decompose_convex_coacd(filename, outfile, params, verbose, auto_scale)
        if os.path.exists(outfile):
            return outfile
    except Exception as e:
        if verbose:
            print(f"Decompose convex first attempt failed: {e}.")

    if preprocess_mode != "on":
        try:
            params["preprocess_mode"] = "on"
            decompose_convex_coacd(
                filename, outfile, params, verbose, auto_scale
            )
            if os.path.exists(outfile):
                return outfile
        except Exception as e:
            if verbose:
                print(
                    f"Decompose convex second attempt with preprocess_mode='on' failed: {e}"
                )

    raise RuntimeError(f"Convex decomposition failed on {filename}")


def decompose_convex_mp(
    filename: str,
    outfile: str,
    threshold: float = 0.05,
    max_convex_hull: int = -1,
    preprocess_mode: str = "auto",
    preprocess_resolution: int = 30,
    resolution: int = 2000,
    mcts_nodes: int = 20,
    mcts_iterations: int = 150,
    mcts_max_depth: int = 3,
    pca: bool = False,
    merge: bool = True,
    seed: int = 0,
    verbose: bool = False,
    auto_scale: bool = True,
) -> str:
    """Decompose a mesh into convex parts using the CoACD algorithm in a separate process.

    See https://simulately.wiki/docs/toolkits/ConvexDecomp for details.
    """
    params = dict(
        threshold=threshold,
        max_convex_hull=max_convex_hull,
        preprocess_mode=preprocess_mode,
        preprocess_resolution=preprocess_resolution,
        resolution=resolution,
        mcts_nodes=mcts_nodes,
        mcts_iterations=mcts_iterations,
        mcts_max_depth=mcts_max_depth,
        pca=pca,
        merge=merge,
        seed=seed,
    )

    ctx = mp.get_context("spawn")
    p = ctx.Process(
        target=decompose_convex_coacd,
        args=(filename, outfile, params, verbose, auto_scale),
    )
    p.start()
    p.join()
    if p.exitcode == 0 and os.path.exists(outfile):
        return outfile

    if preprocess_mode != "on":
        params["preprocess_mode"] = "on"
        p = ctx.Process(
            target=decompose_convex_coacd,
            args=(filename, outfile, params, verbose, auto_scale),
        )
        p.start()
        p.join()
        if p.exitcode == 0 and os.path.exists(outfile):
            return outfile

    raise RuntimeError(f"Convex decomposition failed on {filename}")