File size: 21,555 Bytes
be0ecc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.

import json
import logging
import os
import xml.etree.ElementTree as ET
from collections import defaultdict
from typing import Literal

import mplib
import numpy as np
import sapien.core as sapien
import sapien.physx as physx
import torch
from mani_skill.agents.base_agent import BaseAgent
from mani_skill.envs.scene import ManiSkillScene
from mani_skill.examples.motionplanning.panda.utils import (
    compute_grasp_info_by_obb,
)
from mani_skill.utils.geometry.trimesh_utils import get_component_mesh
from PIL import Image, ImageColor
from scipy.spatial.transform import Rotation as R
from embodied_gen.data.utils import DiffrastRender
from embodied_gen.utils.enum import LayoutInfo, Scene3DItemEnum
from embodied_gen.utils.geometry import quaternion_multiply
from embodied_gen.utils.log import logger

COLORMAP = list(set(ImageColor.colormap.values()))
COLOR_PALETTE = np.array(
    [ImageColor.getrgb(c) for c in COLORMAP], dtype=np.uint8
)
SIM_COORD_ALIGN = np.array(
    [
        [1.0, 0.0, 0.0, 0.0],
        [0.0, -1.0, 0.0, 0.0],
        [0.0, 0.0, -1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
)  # Used to align SAPIEN, MuJoCo coordinate system with the world coordinate system

__all__ = [
    "SIM_COORD_ALIGN",
    "FrankaPandaGrasper",
    "load_assets_from_layout_file",
    "load_mani_skill_robot",
    "render_images",
]


def load_actor_from_urdf(
    scene: ManiSkillScene | sapien.Scene,
    file_path: str,
    pose: sapien.Pose,
    env_idx: int = None,
    use_static: bool = False,
    update_mass: bool = False,
) -> sapien.pysapien.Entity:
    tree = ET.parse(file_path)
    root = tree.getroot()
    node_name = root.get("name")
    file_dir = os.path.dirname(file_path)
    visual_file = root.find('.//visual/geometry/mesh').get("filename")
    collision_file = root.find('.//collision/geometry/mesh').get("filename")
    visual_file = os.path.join(file_dir, visual_file)
    collision_file = os.path.join(file_dir, collision_file)
    static_fric = root.find('.//collision/gazebo/mu1').text
    dynamic_fric = root.find('.//collision/gazebo/mu2').text

    material = physx.PhysxMaterial(
        static_friction=np.clip(float(static_fric), 0.1, 0.7),
        dynamic_friction=np.clip(float(dynamic_fric), 0.1, 0.6),
        restitution=0.05,
    )
    builder = scene.create_actor_builder()

    body_type = "static" if use_static else "dynamic"
    builder.set_physx_body_type(body_type)
    builder.add_multiple_convex_collisions_from_file(
        collision_file if body_type == "dynamic" else visual_file,
        material=material,
        # decomposition="coacd",
        # decomposition_params=dict(
        #     threshold=0.05, max_convex_hull=64, verbose=False
        # ),
    )

    builder.add_visual_from_file(visual_file)
    builder.set_initial_pose(pose)
    if isinstance(scene, ManiSkillScene) and env_idx is not None:
        builder.set_scene_idxs([env_idx])

    actor = builder.build(name=f"{node_name}-{env_idx}")

    if update_mass and hasattr(actor.components[1], "mass"):
        node_mass = float(root.find('.//inertial/mass').get("value"))
        actor.components[1].set_mass(node_mass)

    return actor


def load_assets_from_layout_file(
    scene: ManiSkillScene | sapien.Scene,
    layout: LayoutInfo | str,
    z_offset: float = 0.0,
    init_quat: list[float] = [0, 0, 0, 1],
    env_idx: int = None,
) -> dict[str, sapien.pysapien.Entity]:
    """Load assets from `EmbodiedGen` layout-gen output and create actors in the scene.

    Args:
        scene (sapien.Scene | ManiSkillScene): The SAPIEN or ManiSkill scene to load assets into.
        layout (LayoutInfo): The layout information data.
        z_offset (float): Offset to apply to the Z-coordinate of non-context objects.
        init_quat (List[float]): Initial quaternion (x, y, z, w) for orientation adjustment.
        env_idx (int): Environment index for multi-environment setup.
    """
    if isinstance(layout, str) and layout.endswith(".json"):
        layout = LayoutInfo.from_dict(json.load(open(layout, "r")))

    actors = dict()
    for node in layout.assets:
        file_dir = layout.assets[node]
        file_name = f"{node.replace(' ', '_')}.urdf"
        urdf_file = os.path.join(file_dir, file_name)

        if layout.objs_mapping[node] == Scene3DItemEnum.BACKGROUND.value:
            continue

        position = layout.position[node].copy()
        if layout.objs_mapping[node] != Scene3DItemEnum.CONTEXT.value:
            position[2] += z_offset

        use_static = (
            layout.relation.get(Scene3DItemEnum.CONTEXT.value, None) == node
        )

        # Combine initial quaternion with object quaternion
        x, y, z, qx, qy, qz, qw = position
        qx, qy, qz, qw = quaternion_multiply([qx, qy, qz, qw], init_quat)
        actor = load_actor_from_urdf(
            scene,
            urdf_file,
            sapien.Pose(p=[x, y, z], q=[qw, qx, qy, qz]),
            env_idx,
            use_static=use_static,
            update_mass=False,
        )
        actors[node] = actor

    return actors


def load_mani_skill_robot(
    scene: sapien.Scene | ManiSkillScene,
    layout: LayoutInfo | str,
    control_freq: int = 20,
    robot_init_qpos_noise: float = 0.0,
    control_mode: str = "pd_joint_pos",
    backend_str: tuple[str, str] = ("cpu", "gpu"),
) -> BaseAgent:
    from mani_skill.agents import REGISTERED_AGENTS
    from mani_skill.envs.scene import ManiSkillScene
    from mani_skill.envs.utils.system.backend import (
        parse_sim_and_render_backend,
    )

    if isinstance(layout, str) and layout.endswith(".json"):
        layout = LayoutInfo.from_dict(json.load(open(layout, "r")))

    robot_name = layout.relation[Scene3DItemEnum.ROBOT.value]
    x, y, z, qx, qy, qz, qw = layout.position[robot_name]
    delta_z = 0.002  # Add small offset to avoid collision.
    pose = sapien.Pose([x, y, z + delta_z], [qw, qx, qy, qz])

    if robot_name not in REGISTERED_AGENTS:
        logger.warning(
            f"Robot `{robot_name}` not registered, chosen from {REGISTERED_AGENTS.keys()}, use `panda` instead."
        )
        robot_name = "panda"

    ROBOT_CLS = REGISTERED_AGENTS[robot_name].agent_cls
    backend = parse_sim_and_render_backend(*backend_str)
    if isinstance(scene, sapien.Scene):
        scene = ManiSkillScene([scene], device=backend_str[0], backend=backend)
    robot = ROBOT_CLS(
        scene=scene,
        control_freq=control_freq,
        control_mode=control_mode,
        initial_pose=pose,
    )

    # Set robot init joint rad agree(joint0 to joint6 w 2 finger).
    qpos = np.array(
        [
            0.0,
            np.pi / 8,
            0,
            -np.pi * 3 / 8,
            0,
            np.pi * 3 / 4,
            np.pi / 4,
            0.04,
            0.04,
        ]
    )
    qpos = (
        np.random.normal(
            0, robot_init_qpos_noise, (len(scene.sub_scenes), len(qpos))
        )
        + qpos
    )
    qpos[:, -2:] = 0.04
    robot.reset(qpos)
    robot.init_qpos = robot.robot.qpos
    robot.controller.controllers["gripper"].reset()

    return robot


def render_images(
    camera: sapien.render.RenderCameraComponent,
    render_keys: list[
        Literal[
            "Color",
            "Segmentation",
            "Normal",
            "Mask",
            "Depth",
            "Foreground",
        ]
    ] = None,
) -> dict[str, Image.Image]:
    """Render images from a given sapien camera.

    Args:
        camera (sapien.render.RenderCameraComponent): The camera to render from.
        render_keys (List[str]): Types of images to render (e.g., Color, Segmentation).

    Returns:
        Dict[str, Image.Image]: Dictionary of rendered images.
    """
    if render_keys is None:
        render_keys = [
            "Color",
            "Segmentation",
            "Normal",
            "Mask",
            "Depth",
            "Foreground",
        ]

    results: dict[str, Image.Image] = {}
    if "Color" in render_keys:
        color = camera.get_picture("Color")
        color_rgb = (np.clip(color[..., :3], 0, 1) * 255).astype(np.uint8)
        results["Color"] = Image.fromarray(color_rgb)

    if "Mask" in render_keys:
        alpha = (np.clip(color[..., 3], 0, 1) * 255).astype(np.uint8)
        results["Mask"] = Image.fromarray(alpha)

    if "Segmentation" in render_keys:
        seg_labels = camera.get_picture("Segmentation")
        label0 = seg_labels[..., 0].astype(np.uint8)
        seg_color = COLOR_PALETTE[label0]
        results["Segmentation"] = Image.fromarray(seg_color)

    if "Foreground" in render_keys:
        seg_labels = camera.get_picture("Segmentation")
        label0 = seg_labels[..., 0]
        mask = np.where((label0 > 1), 255, 0).astype(np.uint8)
        color = camera.get_picture("Color")
        color_rgb = (np.clip(color[..., :3], 0, 1) * 255).astype(np.uint8)
        foreground = np.concatenate([color_rgb, mask[..., None]], axis=-1)
        results["Foreground"] = Image.fromarray(foreground)

    if "Normal" in render_keys:
        normal = camera.get_picture("Normal")[..., :3]
        normal_img = (((normal + 1) / 2) * 255).astype(np.uint8)
        results["Normal"] = Image.fromarray(normal_img)

    if "Depth" in render_keys:
        position_map = camera.get_picture("Position")
        depth = -position_map[..., 2]
        alpha = torch.tensor(color[..., 3], dtype=torch.float32)
        norm_depth = DiffrastRender.normalize_map_by_mask(
            torch.tensor(depth), alpha
        )
        depth_img = (norm_depth * 255).to(torch.uint8).numpy()
        results["Depth"] = Image.fromarray(depth_img)

    return results


class SapienSceneManager:
    """A class to manage SAPIEN simulator."""

    def __init__(
        self, sim_freq: int, ray_tracing: bool, device: str = "cuda"
    ) -> None:
        self.sim_freq = sim_freq
        self.ray_tracing = ray_tracing
        self.device = device
        self.renderer = sapien.SapienRenderer()
        self.scene = self._setup_scene()
        self.cameras: list[sapien.render.RenderCameraComponent] = []
        self.actors: dict[str, sapien.pysapien.Entity] = {}

    def _setup_scene(self) -> sapien.Scene:
        """Set up the SAPIEN scene with lighting and ground."""
        # Ray tracing settings
        if self.ray_tracing:
            sapien.render.set_camera_shader_dir("rt")
            sapien.render.set_ray_tracing_samples_per_pixel(64)
            sapien.render.set_ray_tracing_path_depth(10)
            sapien.render.set_ray_tracing_denoiser("oidn")

        scene = sapien.Scene()
        scene.set_timestep(1 / self.sim_freq)

        # Add lighting
        scene.set_ambient_light([0.2, 0.2, 0.2])
        scene.add_directional_light(
            direction=[0, 1, -1],
            color=[1.5, 1.45, 1.4],
            shadow=True,
            shadow_map_size=2048,
        )
        scene.add_directional_light(
            direction=[0, -0.5, 1], color=[0.8, 0.8, 0.85], shadow=False
        )
        scene.add_directional_light(
            direction=[0, -1, 1], color=[1.0, 1.0, 1.0], shadow=False
        )

        ground_material = self.renderer.create_material()
        ground_material.base_color = [0.5, 0.5, 0.5, 1]  # rgba, gray
        ground_material.roughness = 0.7
        ground_material.metallic = 0.0
        scene.add_ground(0, render_material=ground_material)

        return scene

    def step_action(
        self,
        agent: BaseAgent,
        action: torch.Tensor,
        cameras: list[sapien.render.RenderCameraComponent],
        render_keys: list[str],
        sim_steps_per_control: int = 1,
    ) -> dict:
        agent.set_action(action)
        frames = defaultdict(list)
        for _ in range(sim_steps_per_control):
            self.scene.step()

        self.scene.update_render()
        for camera in cameras:
            camera.take_picture()
            images = render_images(camera, render_keys=render_keys)
            frames[camera.name].append(images)

        return frames

    def create_camera(
        self,
        cam_name: str,
        pose: sapien.Pose,
        image_hw: tuple[int, int],
        fovy_deg: float,
    ) -> sapien.render.RenderCameraComponent:
        """Create a single camera in the scene.

        Args:
            cam_name (str): Name of the camera.
            pose (sapien.Pose): Camera pose p=(x, y, z), q=(w, x, y, z)
            image_hw (Tuple[int, int]): Image resolution (height, width) for cameras.
            fovy_deg (float): Field of view in degrees for cameras.

        Returns:
            sapien.render.RenderCameraComponent: The created camera.
        """
        cam_actor = self.scene.create_actor_builder().build_kinematic()
        cam_actor.set_pose(pose)
        camera = self.scene.add_mounted_camera(
            name=cam_name,
            mount=cam_actor,
            pose=sapien.Pose(p=[0, 0, 0], q=[1, 0, 0, 0]),
            width=image_hw[1],
            height=image_hw[0],
            fovy=np.deg2rad(fovy_deg),
            near=0.01,
            far=100,
        )
        self.cameras.append(camera)

        return camera

    def initialize_circular_cameras(
        self,
        num_cameras: int,
        radius: float,
        height: float,
        target_pt: list[float],
        image_hw: tuple[int, int],
        fovy_deg: float,
    ) -> list[sapien.render.RenderCameraComponent]:
        """Initialize multiple cameras arranged in a circle.

        Args:
            num_cameras (int): Number of cameras to create.
            radius (float): Radius of the camera circle.
            height (float): Fixed Z-coordinate of the cameras.
            target_pt (list[float]): 3D point (x, y, z) that cameras look at.
            image_hw (Tuple[int, int]): Image resolution (height, width) for cameras.
            fovy_deg (float): Field of view in degrees for cameras.

        Returns:
            List[sapien.render.RenderCameraComponent]: List of created cameras.
        """
        angle_step = 2 * np.pi / num_cameras
        world_up_vec = np.array([0.0, 0.0, 1.0])
        target_pt = np.array(target_pt)

        for i in range(num_cameras):
            angle = i * angle_step
            cam_x = radius * np.cos(angle)
            cam_y = radius * np.sin(angle)
            cam_z = height
            eye_pos = [cam_x, cam_y, cam_z]

            forward_vec = target_pt - eye_pos
            forward_vec = forward_vec / np.linalg.norm(forward_vec)
            temp_right_vec = np.cross(forward_vec, world_up_vec)

            if np.linalg.norm(temp_right_vec) < 1e-6:
                temp_right_vec = np.array([1.0, 0.0, 0.0])
                if np.abs(np.dot(temp_right_vec, forward_vec)) > 0.99:
                    temp_right_vec = np.array([0.0, 1.0, 0.0])

            right_vec = temp_right_vec / np.linalg.norm(temp_right_vec)
            up_vec = np.cross(right_vec, forward_vec)
            rotation_matrix = np.array([forward_vec, -right_vec, up_vec]).T

            rot = R.from_matrix(rotation_matrix)
            scipy_quat = rot.as_quat()  # (x, y, z, w)
            quat = [
                scipy_quat[3],
                scipy_quat[0],
                scipy_quat[1],
                scipy_quat[2],
            ]  # (w, x, y, z)

            self.create_camera(
                f"camera_{i}",
                sapien.Pose(p=eye_pos, q=quat),
                image_hw,
                fovy_deg,
            )

        return self.cameras


class FrankaPandaGrasper(object):
    def __init__(
        self,
        agent: BaseAgent,
        control_freq: float,
        joint_vel_limits: float = 2.0,
        joint_acc_limits: float = 1.0,
        finger_length: float = 0.025,
    ) -> None:
        self.agent = agent
        self.robot = agent.robot
        self.control_freq = control_freq
        self.control_timestep = 1 / control_freq
        self.joint_vel_limits = joint_vel_limits
        self.joint_acc_limits = joint_acc_limits
        self.finger_length = finger_length
        self.planners = self._setup_planner()

    def _setup_planner(self) -> mplib.Planner:
        planners = []
        for pose in self.robot.pose:
            link_names = [link.get_name() for link in self.robot.get_links()]
            joint_names = [
                joint.get_name() for joint in self.robot.get_active_joints()
            ]
            planner = mplib.Planner(
                urdf=self.agent.urdf_path,
                srdf=self.agent.urdf_path.replace(".urdf", ".srdf"),
                user_link_names=link_names,
                user_joint_names=joint_names,
                move_group="panda_hand_tcp",
                joint_vel_limits=np.ones(7) * self.joint_vel_limits,
                joint_acc_limits=np.ones(7) * self.joint_acc_limits,
            )
            planner.set_base_pose(pose.raw_pose[0].tolist())
            planners.append(planner)

        return planners

    def control_gripper(
        self,
        gripper_state: Literal[-1, 1],
        n_step: int = 10,
    ) -> np.ndarray:
        qpos = self.robot.get_qpos()[0, :-2].cpu().numpy()
        actions = []
        for _ in range(n_step):
            action = np.hstack([qpos, gripper_state])[None, ...]
            actions.append(action)

        return np.concatenate(actions, axis=0)

    def move_to_pose(
        self,
        pose: sapien.Pose,
        control_timestep: float,
        gripper_state: Literal[-1, 1],
        use_point_cloud: bool = False,
        n_max_step: int = 100,
        action_key: str = "position",
        env_idx: int = 0,
    ) -> np.ndarray:
        result = self.planners[env_idx].plan_qpos_to_pose(
            np.concatenate([pose.p, pose.q]),
            self.robot.get_qpos().cpu().numpy()[0],
            time_step=control_timestep,
            use_point_cloud=use_point_cloud,
        )

        if result["status"] != "Success":
            result = self.planners[env_idx].plan_screw(
                np.concatenate([pose.p, pose.q]),
                self.robot.get_qpos().cpu().numpy()[0],
                time_step=control_timestep,
                use_point_cloud=use_point_cloud,
            )

        if result["status"] != "Success":
            return

        sample_ratio = (len(result[action_key]) // n_max_step) + 1
        result[action_key] = result[action_key][::sample_ratio]

        n_step = len(result[action_key])
        actions = []
        for i in range(n_step):
            qpos = result[action_key][i]
            action = np.hstack([qpos, gripper_state])[None, ...]
            actions.append(action)

        return np.concatenate(actions, axis=0)

    def compute_grasp_action(
        self,
        actor: sapien.pysapien.Entity,
        reach_target_only: bool = True,
        offset: tuple[float, float, float] = [0, 0, -0.05],
        env_idx: int = 0,
    ) -> np.ndarray:
        physx_rigid = actor.components[1]
        mesh = get_component_mesh(physx_rigid, to_world_frame=True)
        obb = mesh.bounding_box_oriented
        approaching = np.array([0, 0, -1])
        tcp_pose = self.agent.tcp.pose[env_idx]
        target_closing = (
            tcp_pose.to_transformation_matrix()[0, :3, 1].cpu().numpy()
        )
        grasp_info = compute_grasp_info_by_obb(
            obb,
            approaching=approaching,
            target_closing=target_closing,
            depth=self.finger_length,
        )

        closing, center = grasp_info["closing"], grasp_info["center"]
        raw_tcp_pose = tcp_pose.sp
        grasp_pose = self.agent.build_grasp_pose(approaching, closing, center)
        reach_pose = grasp_pose * sapien.Pose(p=offset)
        grasp_pose = grasp_pose * sapien.Pose(p=[0, 0, 0.01])
        actions = []
        reach_actions = self.move_to_pose(
            reach_pose,
            self.control_timestep,
            gripper_state=1,
            env_idx=env_idx,
        )
        actions.append(reach_actions)

        if reach_actions is None:
            logger.warning(
                f"Failed to reach the grasp pose for node `{actor.name}`, skipping grasping."
            )
            return None

        if not reach_target_only:
            grasp_actions = self.move_to_pose(
                grasp_pose,
                self.control_timestep,
                gripper_state=1,
                env_idx=env_idx,
            )
            actions.append(grasp_actions)
            close_actions = self.control_gripper(
                gripper_state=-1,
                env_idx=env_idx,
            )
            actions.append(close_actions)
            back_actions = self.move_to_pose(
                raw_tcp_pose,
                self.control_timestep,
                gripper_state=-1,
                env_idx=env_idx,
            )
            actions.append(back_actions)

        return np.concatenate(actions, axis=0)