File size: 7,891 Bytes
575f14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be0ecc3
575f14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be0ecc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.

import os
import sys
import zipfile

import numpy as np
import torch
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms


def monkey_patch_pano2room():
    current_file_path = os.path.abspath(__file__)
    current_dir = os.path.dirname(current_file_path)
    sys.path.append(os.path.join(current_dir, "../.."))
    sys.path.append(os.path.join(current_dir, "../../thirdparty/pano2room"))
    from thirdparty.pano2room.modules.geo_predictors.omnidata.omnidata_normal_predictor import (
        OmnidataNormalPredictor,
    )
    from thirdparty.pano2room.modules.geo_predictors.omnidata.omnidata_predictor import (
        OmnidataPredictor,
    )

    def patched_omni_depth_init(self):
        self.img_size = 384
        self.model = torch.hub.load(
            'alexsax/omnidata_models', 'depth_dpt_hybrid_384'
        )
        self.model.eval()
        self.trans_totensor = transforms.Compose(
            [
                transforms.Resize(self.img_size, interpolation=Image.BILINEAR),
                transforms.CenterCrop(self.img_size),
                transforms.Normalize(mean=0.5, std=0.5),
            ]
        )

    OmnidataPredictor.__init__ = patched_omni_depth_init

    def patched_omni_normal_init(self):
        self.img_size = 384
        self.model = torch.hub.load(
            'alexsax/omnidata_models', 'surface_normal_dpt_hybrid_384'
        )
        self.model.eval()
        self.trans_totensor = transforms.Compose(
            [
                transforms.Resize(self.img_size, interpolation=Image.BILINEAR),
                transforms.CenterCrop(self.img_size),
                transforms.Normalize(mean=0.5, std=0.5),
            ]
        )

    OmnidataNormalPredictor.__init__ = patched_omni_normal_init

    def patched_panojoint_init(self, save_path=None):
        self.depth_predictor = OmnidataPredictor()
        self.normal_predictor = OmnidataNormalPredictor()
        self.save_path = save_path

    from modules.geo_predictors import PanoJointPredictor

    PanoJointPredictor.__init__ = patched_panojoint_init

    # NOTE: We use gsplat instead.
    # import depth_diff_gaussian_rasterization_min as ddgr
    # from dataclasses import dataclass
    # @dataclass
    # class PatchedGaussianRasterizationSettings:
    #     image_height: int
    #     image_width: int
    #     tanfovx: float
    #     tanfovy: float
    #     bg: torch.Tensor
    #     scale_modifier: float
    #     viewmatrix: torch.Tensor
    #     projmatrix: torch.Tensor
    #     sh_degree: int
    #     campos: torch.Tensor
    #     prefiltered: bool
    #     debug: bool = False
    # ddgr.GaussianRasterizationSettings = PatchedGaussianRasterizationSettings

    # disable get_has_ddp_rank print in `BaseInpaintingTrainingModule`
    os.environ["NODE_RANK"] = "0"

    from thirdparty.pano2room.modules.inpainters.lama.saicinpainting.training.trainers import (
        load_checkpoint,
    )
    from thirdparty.pano2room.modules.inpainters.lama_inpainter import (
        LamaInpainter,
    )

    def patched_lama_inpaint_init(self):
        zip_path = hf_hub_download(
            repo_id="smartywu/big-lama",
            filename="big-lama.zip",
            repo_type="model",
        )
        extract_dir = os.path.splitext(zip_path)[0]

        if not os.path.exists(extract_dir):
            os.makedirs(extract_dir, exist_ok=True)
            with zipfile.ZipFile(zip_path, "r") as zip_ref:
                zip_ref.extractall(extract_dir)

        config_path = os.path.join(extract_dir, 'big-lama', 'config.yaml')
        checkpoint_path = os.path.join(
            extract_dir, 'big-lama/models/best.ckpt'
        )
        train_config = OmegaConf.load(config_path)
        train_config.training_model.predict_only = True
        train_config.visualizer.kind = 'noop'

        self.model = load_checkpoint(
            train_config, checkpoint_path, strict=False, map_location='cpu'
        )
        self.model.freeze()

    LamaInpainter.__init__ = patched_lama_inpaint_init

    from diffusers import StableDiffusionInpaintPipeline
    from thirdparty.pano2room.modules.inpainters.SDFT_inpainter import (
        SDFTInpainter,
    )

    def patched_sd_inpaint_init(self, subset_name=None):
        super(SDFTInpainter, self).__init__()
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-inpainting",
            torch_dtype=torch.float16,
        ).to("cuda")
        pipe.enable_model_cpu_offload()
        self.inpaint_pipe = pipe

    SDFTInpainter.__init__ = patched_sd_inpaint_init


def monkey_patch_maniskill():
    from mani_skill.envs.scene import ManiSkillScene

    def get_sensor_images(
        self, obs: dict[str, any]
    ) -> dict[str, dict[str, torch.Tensor]]:
        sensor_data = dict()
        for name, sensor in self.sensors.items():
            sensor_data[name] = sensor.get_images(obs[name])
        return sensor_data

    def get_human_render_camera_images(
        self, camera_name: str = None, return_alpha: bool = False
    ) -> dict[str, torch.Tensor]:
        def get_rgba_tensor(camera, return_alpha):
            color = camera.get_obs(
                rgb=True, depth=False, segmentation=False, position=False
            )["rgb"]
            if return_alpha:
                seg_labels = camera.get_obs(
                    rgb=False, depth=False, segmentation=True, position=False
                )["segmentation"]
                masks = np.where((seg_labels.cpu() > 0), 255, 0).astype(
                    np.uint8
                )
                masks = torch.tensor(masks).to(color.device)
                color = torch.concat([color, masks], dim=-1)

            return color

        image_data = dict()
        if self.gpu_sim_enabled:
            if self.parallel_in_single_scene:
                for name, camera in self.human_render_cameras.items():
                    camera.camera._render_cameras[0].take_picture()
                    rgba = get_rgba_tensor(camera, return_alpha)
                    image_data[name] = rgba
            else:
                for name, camera in self.human_render_cameras.items():
                    if camera_name is not None and name != camera_name:
                        continue
                    assert camera.config.shader_config.shader_pack not in [
                        "rt",
                        "rt-fast",
                        "rt-med",
                    ], "ray tracing shaders do not work with parallel rendering"
                    camera.capture()
                    rgba = get_rgba_tensor(camera, return_alpha)
                    image_data[name] = rgba
        else:
            for name, camera in self.human_render_cameras.items():
                if camera_name is not None and name != camera_name:
                    continue
                camera.capture()
                rgba = get_rgba_tensor(camera, return_alpha)
                image_data[name] = rgba

        return image_data

    ManiSkillScene.get_sensor_images = get_sensor_images
    ManiSkillScene.get_human_render_camera_images = (
        get_human_render_camera_images
    )