xinjie.wang commited on
Commit
1043d26
·
1 Parent(s): b0848ee
app.py CHANGED
@@ -286,6 +286,22 @@ with gr.Blocks(
286
  est_mu_text = gr.Textbox(
287
  label="Friction coefficient", interactive=False
288
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289
 
290
  output_buf = gr.State()
291
 
@@ -353,6 +369,7 @@ with gr.Blocks(
353
  ip_adapt_scale,
354
  img_resolution,
355
  rmbg_tag,
 
356
  ],
357
  outputs=[
358
  image_sample1,
 
286
  est_mu_text = gr.Textbox(
287
  label="Friction coefficient", interactive=False
288
  )
289
+
290
+ prompt_examples = [
291
+ "satin gold tea cup with saucer",
292
+ "small brown leather bag",
293
+ "Miniature cup with floral design",
294
+ "带木质底座, 具有经纬线的地球仪",
295
+ "橙色电动手钻, 有磨损细节",
296
+ "手工制作的皮革笔记本",
297
+ "写实风格机甲3D全身模型, 主体色调为深灰色和荧光黄",
298
+ ]
299
+ examples = gr.Examples(
300
+ label="Gallery",
301
+ examples=prompt_examples,
302
+ inputs=[text_prompt],
303
+ examples_per_page=10,
304
+ )
305
 
306
  output_buf = gr.State()
307
 
 
369
  ip_adapt_scale,
370
  img_resolution,
371
  rmbg_tag,
372
+ seed,
373
  ],
374
  outputs=[
375
  image_sample1,
common.py CHANGED
@@ -165,7 +165,7 @@ if os.getenv("GRADIO_APP") == "imageto3d":
165
  RBG14_REMOVER = BMGG14Remover()
166
  SAM_PREDICTOR = SAMPredictor(model_type="vit_h", device="cpu")
167
  PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
168
- "jetx/trellis-image-large"
169
  )
170
  # PIPELINE.cuda()
171
  SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
@@ -179,7 +179,7 @@ elif os.getenv("GRADIO_APP") == "textto3d":
179
  RBG_REMOVER = RembgRemover()
180
  RBG14_REMOVER = BMGG14Remover()
181
  PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
182
- "jetx/trellis-image-large"
183
  )
184
  # PIPELINE.cuda()
185
  text_model_dir = "weights/Kolors"
@@ -671,6 +671,7 @@ def text2image_fn(
671
  image_wh: int | tuple[int, int] = [1024, 1024],
672
  rmbg_tag: str = "rembg",
673
  n_sample: int = 3,
 
674
  req: gr.Request = None,
675
  ):
676
  if isinstance(image_wh, int):
@@ -692,6 +693,7 @@ def text2image_fn(
692
  ip_image=ip_image,
693
  image_wh=image_wh,
694
  infer_step=infer_step,
 
695
  )
696
 
697
  for idx in range(len(images)):
 
165
  RBG14_REMOVER = BMGG14Remover()
166
  SAM_PREDICTOR = SAMPredictor(model_type="vit_h", device="cpu")
167
  PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
168
+ "microsoft/TRELLIS-image-large"
169
  )
170
  # PIPELINE.cuda()
171
  SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
 
179
  RBG_REMOVER = RembgRemover()
180
  RBG14_REMOVER = BMGG14Remover()
181
  PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
182
+ "microsoft/TRELLIS-image-large"
183
  )
184
  # PIPELINE.cuda()
185
  text_model_dir = "weights/Kolors"
 
671
  image_wh: int | tuple[int, int] = [1024, 1024],
672
  rmbg_tag: str = "rembg",
673
  n_sample: int = 3,
674
+ seed: int = None,
675
  req: gr.Request = None,
676
  ):
677
  if isinstance(image_wh, int):
 
693
  ip_image=ip_image,
694
  image_wh=image_wh,
695
  infer_step=infer_step,
696
+ seed=seed,
697
  )
698
 
699
  for idx in range(len(images)):
embodied_gen/models/text_model.py CHANGED
@@ -18,6 +18,8 @@
18
  import logging
19
 
20
  import torch
 
 
21
  from diffusers import (
22
  AutoencoderKL,
23
  EulerDiscreteScheduler,
@@ -138,11 +140,18 @@ def text2img_gen(
138
  image_wh: tuple[int, int] = [1024, 1024],
139
  infer_step: int = 50,
140
  ip_image_size: int = 512,
 
141
  ) -> list[Image.Image]:
142
  prompt = "Single " + prompt + ", in the center of the image"
143
  prompt += ", high quality, high resolution, best quality, white background, 3D style," # noqa
144
  logger.info(f"Processing prompt: {prompt}")
145
 
 
 
 
 
 
 
146
  kwargs = dict(
147
  prompt=prompt,
148
  height=image_wh[1],
@@ -150,6 +159,7 @@ def text2img_gen(
150
  num_inference_steps=infer_step,
151
  guidance_scale=guidance_scale,
152
  num_images_per_prompt=n_sample,
 
153
  )
154
  if ip_image is not None:
155
  if isinstance(ip_image, str):
 
18
  import logging
19
 
20
  import torch
21
+ import numpy as np
22
+ import random
23
  from diffusers import (
24
  AutoencoderKL,
25
  EulerDiscreteScheduler,
 
140
  image_wh: tuple[int, int] = [1024, 1024],
141
  infer_step: int = 50,
142
  ip_image_size: int = 512,
143
+ seed: int = None,
144
  ) -> list[Image.Image]:
145
  prompt = "Single " + prompt + ", in the center of the image"
146
  prompt += ", high quality, high resolution, best quality, white background, 3D style," # noqa
147
  logger.info(f"Processing prompt: {prompt}")
148
 
149
+ if seed is not None:
150
+ generator = torch.Generator(pipeline.device).manual_seed(seed)
151
+ torch.manual_seed(seed)
152
+ np.random.seed(seed)
153
+ random.seed(seed)
154
+
155
  kwargs = dict(
156
  prompt=prompt,
157
  height=image_wh[1],
 
159
  num_inference_steps=infer_step,
160
  guidance_scale=guidance_scale,
161
  num_images_per_prompt=n_sample,
162
+ generator=generator,
163
  )
164
  if ip_image is not None:
165
  if isinstance(ip_image, str):
embodied_gen/scripts/imageto3d.py CHANGED
@@ -70,7 +70,7 @@ IMAGESR_MODEL = ImageRealESRGAN(outscale=4)
70
  RBG_REMOVER = RembgRemover()
71
  RBG14_REMOVER = BMGG14Remover()
72
  SAM_PREDICTOR = SAMPredictor(model_type="vit_h", device="cpu")
73
- PIPELINE = TrellisImageTo3DPipeline.from_pretrained("jetx/trellis-image-large")
74
  PIPELINE.cuda()
75
  SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
76
  GEO_CHECKER = MeshGeoChecker(GPT_CLIENT)
 
70
  RBG_REMOVER = RembgRemover()
71
  RBG14_REMOVER = BMGG14Remover()
72
  SAM_PREDICTOR = SAMPredictor(model_type="vit_h", device="cpu")
73
+ PIPELINE = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS-image-large")
74
  PIPELINE.cuda()
75
  SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
76
  GEO_CHECKER = MeshGeoChecker(GPT_CLIENT)
embodied_gen/scripts/text2image.py CHANGED
@@ -82,6 +82,11 @@ def parse_args():
82
  type=int,
83
  default=50,
84
  )
 
 
 
 
 
85
  args = parser.parse_args()
86
 
87
  return args
@@ -143,6 +148,7 @@ def entrypoint(
143
  ip_image=ip_img_path,
144
  image_wh=[args.resolution, args.resolution],
145
  infer_step=args.infer_step,
 
146
  )
147
 
148
  save_paths = []
 
82
  type=int,
83
  default=50,
84
  )
85
+ parser.add_argument(
86
+ "--seed",
87
+ type=int,
88
+ default=0,
89
+ )
90
  args = parser.parse_args()
91
 
92
  return args
 
148
  ip_image=ip_img_path,
149
  image_wh=[args.resolution, args.resolution],
150
  infer_step=args.infer_step,
151
+ seed=args.seed,
152
  )
153
 
154
  save_paths = []
requirements.txt CHANGED
@@ -5,6 +5,7 @@ torchvision==0.19.0
5
  xformers==0.0.27.post2
6
  pytorch-lightning==2.4.0
7
  spconv-cu120==2.3.6
 
8
  triton
9
  dataclasses_json
10
  easydict
@@ -37,6 +38,7 @@ kolors@git+https://github.com/Kwai-Kolors/Kolors.git#egg=038818d
37
  segment-anything@git+https://github.com/facebookresearch/segment-anything.git#egg=dca509f
38
  https://github.com/nerfstudio-project/gsplat/releases/download/v1.5.0/gsplat-1.5.0+pt24cu121-cp310-cp310-linux_x86_64.whl
39
  https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.0.post2/flash_attn-2.7.0.post2+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
40
- https://huggingface.co/spaces/xinjjj/ImgRoboAssetGen/resolve/main/wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl
41
- https://huggingface.co/spaces/xinjjj/ImgRoboAssetGen/resolve/main/wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl
42
- https://huggingface.co/spaces/xinjjj/ImgRoboAssetGen/resolve/main/wheels/kaolin-0.16.0-cp310-cp310-linux_x86_64.whl
 
 
5
  xformers==0.0.27.post2
6
  pytorch-lightning==2.4.0
7
  spconv-cu120==2.3.6
8
+ numpy==1.26.4
9
  triton
10
  dataclasses_json
11
  easydict
 
38
  segment-anything@git+https://github.com/facebookresearch/segment-anything.git#egg=dca509f
39
  https://github.com/nerfstudio-project/gsplat/releases/download/v1.5.0/gsplat-1.5.0+pt24cu121-cp310-cp310-linux_x86_64.whl
40
  https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.0.post2/flash_attn-2.7.0.post2+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
41
+ kaolin@git+https://github.com/NVIDIAGameWorks/kaolin.git@v0.16.0
42
+ # nvdiffrast@git+https://github.com/NVlabs/nvdiffrast.git#egg=729261d
43
+ https://huggingface.co/xinjjj/RoboAssetGen/resolve/main/wheel_cu121/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl
44
+ https://huggingface.co/xinjjj/RoboAssetGen/resolve/main/wheel_cu121/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl